
Red Hat GFS 6.0

Administrator’s Guide

Red Hat GFS 6.0: Administrator’s Guide
Copyright © 2004 and 2005 Red Hat, Inc.

Red Hat, Inc.

1801 Varsity Drive
Raleigh NC 27606-2072 USA
Phone: +1 919 754 3700
Phone: 888 733 4281
Fax: +1 919 754 3701
PO Box 13588
Research Triangle Park NC 27709 USA

rh-gfsg(EN)-6.0-Print-RHI (2005-08-02T11:07-0400)
Copyright © 2005 by Red Hat, Inc. This material may be distributed only subject to the terms and conditions set forth in the
Open Publication License, V1.0 or later (the latest version is presently available at http://www.opencontent.org/openpub/).
Distribution of substantively modified versions of this document is prohibited without the explicit permission of the copyright
holder.
Distribution of the work or derivative of the work in any standard (paper) book form for commercial purposes is prohibited
unless prior permission is obtained from the copyright holder.
Red Hat and the Red Hat "Shadow Man" logo are registered trademarks of Red Hat, Inc. in the United States and other
countries.
All other trademarks referenced herein are the property of their respective owners.
The GPG fingerprint of the security@redhat.com key is:
CA 20 86 86 2B D6 9D FC 65 F6 EC C4 21 91 80 CD DB 42 A6 0E

Table of Contents
Introduction.. i

1. Audience .. i
2. Document Conventions .. i
3. More to Come .. iii

3.1. Send in Your Feedback ... iv
4. Activate Your Subscription .. iv

4.1. Provide a Red Hat Login... iv
4.2. Provide Your Subscription Number ... v
4.3. Connect Your System... v

5. Recommended References .. v
1. Red Hat GFS Overview .. 1

1.1. New and Changed Features.. 1
1.2. Performance, Scalability, and Economy .. 2

1.2.1. Superior Performance and Scalability .. 2
1.2.2. Performance, Scalability, Moderate Price... 3
1.2.3. Economy and Performance ... 4

1.3. GFS Functions ... 5
1.3.1. Cluster Volume Management .. 5
1.3.2. Lock Management .. 5
1.3.3. Cluster Management, Fencing, and Recovery .. 6
1.3.4. Cluster Configuration Management .. 6

1.4. GFS Software Subsystems ... 7
1.5. Before Configuring GFS .. 9

2. System Requirements ... 11
2.1. Platform Requirements .. 11
2.2. TCP/IP Network... 11
2.3. Fibre Channel Storage Network... 11
2.4. Fibre Channel Storage Devices .. 12
2.5. Network Power Switches ... 12
2.6. Console Access .. 12
2.7. I/O Fencing .. 12

3. Installing GFS ... 13
3.1. Prerequisite Tasks .. 13

3.1.1. Prerequisite Software .. 13
3.1.2. Specifying a Persistent Major Number ... 14

3.2. Installation Tasks ... 14
3.2.1. Installing GFS RPMs .. 14
3.2.2. Loading the GFS Kernel Modules .. 15

4. Initial Configuration ... 17
4.1. Prerequisite Tasks .. 17
4.2. Initial Configuration Tasks... 17

4.2.1. Setting Up Logical Devices .. 18
4.2.2. Setting Up and Starting the Cluster Configuration System 18
4.2.3. Starting Clustering and Locking Systems... 19
4.2.4. Setting Up and Mounting File Systems .. 19

5. Using the Pool Volume Manager ... 21
5.1. Overview of GFS Pool Volume Manager .. 21
5.2. Synopsis of Pool Management Commands ... 21

5.2.1. pool_tool ... 22
5.2.2. pool_assemble .. 23
5.2.3. pool_info ... 23
5.2.4. pool_mp ... 24

5.3. Scanning Block Devices .. 25
5.3.1. Usage... 25
5.3.2. Example .. 25

5.4. Creating a Configuration File for a New Volume .. 26
5.4.1. Examples... 27

5.5. Creating a Pool Volume ... 27
5.5.1. Usage... 28
5.5.2. Example .. 28
5.5.3. Comments ... 28

5.6. Activating/Deactivating a Pool Volume ... 28
5.6.1. Usage... 29
5.6.2. Examples... 29
5.6.3. Comments ... 29

5.7. Displaying Pool Configuration Information .. 30
5.7.1. Usage... 30
5.7.2. Example .. 30

5.8. Growing a Pool Volume ... 30
5.8.1. Usage... 30
5.8.2. Example procedure ... 31

5.9. Erasing a Pool Volume ... 31
5.9.1. Usage... 32
5.9.2. Example .. 32
5.9.3. Comments ... 32

5.10. Renaming a Pool Volume... 32
5.10.1. Usage... 32
5.10.2. Example .. 33

5.11. Changing a Pool Volume Minor Number .. 33
5.11.1. Usage... 33
5.11.2. Example .. 33
5.11.3. Comments ... 33

5.12. Displaying Pool Volume Information .. 34
5.12.1. Usage... 34
5.12.2. Examples... 34

5.13. Using Pool Volume Statistics ... 35
5.13.1. Usage... 35
5.13.2. Examples... 35

5.14. Adjusting Pool Volume Multipathing .. 35
5.14.1. Usage... 36
5.14.2. Examples... 36

6. Creating the Cluster Configuration System Files .. 37
6.1. Prerequisite Tasks .. 37
6.2. CCS File Creation Tasks .. 37
6.3. Dual Power and Multipath FC Fencing Considerations .. 38
6.4. GNBD Multipath Considerations for CCS Files ... 38
6.5. Creating the cluster.ccs File .. 39
6.6. Creating the fence.ccs File .. 41
6.7. Creating the nodes.ccs File .. 51

7. Using the Cluster Configuration System... 75
7.1. Creating a CCS Archive... 75

7.1.1. Usage... 75
7.1.2. Example .. 76
7.1.3. Comments ... 76

7.2. Starting CCS in the Cluster .. 76
7.2.1. Usage... 76
7.2.2. Example .. 77
7.2.3. Comments ... 77

7.3. Using Other CCS Administrative Options ... 77
7.3.1. Extracting Files from a CCS Archive ... 77
7.3.2. Listing Files in a CCS Archive ... 78
7.3.3. Comparing CCS Configuration Files to a CCS Archive 78

7.4. Changing CCS Configuration Files ... 78
7.4.1. Example Procedure ... 79

7.5. Alternative Methods to Using a CCA Device .. 79
7.5.1. CCA File and Server ... 79
7.5.2. Local CCA Files ... 82

7.6. Combining CCS Methods .. 82
8. Using Clustering and Locking Systems .. 85

8.1. Locking System Overview... 85
8.2. LOCK_GULM... 85

8.2.1. Selection of LOCK_GULM Servers... 85
8.2.2. Number of LOCK_GULM Servers .. 86
8.2.3. Starting LOCK_GULM Servers ... 86
8.2.4. Fencing and LOCK_GULM ... 86
8.2.5. Shutting Down a LOCK_GULM Server .. 86

8.3. LOCK_NOLOCK.. 87
9. Managing GFS .. 89

9.1. Making a File System .. 89
9.1.1. Usage... 89
9.1.2. Examples... 90
9.1.3. Complete Options ... 90

9.2. Mounting a File System ... 91
9.2.1. Usage... 92
9.2.2. Example .. 92
9.2.3. Complete Usage .. 92

9.3. Unmounting a File System .. 93
9.3.1. Usage... 94

9.4. GFS Quota Management.. 94
9.4.1. Setting Quotas ... 94
9.4.2. Displaying Quota Limits and Usage ... 95
9.4.3. Synchronizing Quotas ... 96
9.4.4. Disabling/Enabling Quota Enforcement ... 97
9.4.5. Disabling/Enabling Quota Accounting ... 98

9.5. Growing a File System... 99
9.5.1. Usage... 99
9.5.2. Comments ... 100
9.5.3. Examples... 100
9.5.4. Complete Usage .. 100

9.6. Adding Journals to a File System .. 101
9.6.1. Usage... 101
9.6.2. Comments ... 101
9.6.3. Examples... 101
9.6.4. Complete Usage .. 102

9.7. Direct I/O ... 103
9.7.1. O_DIRECT ... 103
9.7.2. GFS File Attribute... 103
9.7.3. GFS Directory Attribute ... 104

9.8. Data Journaling .. 104
9.8.1. Usage... 105
9.8.2. Examples... 105

9.9. Configuring atime Updates .. 105
9.9.1. Mount with noatime.. 106
9.9.2. Tune GFS atime Quantum .. 106

9.10. Suspending Activity on a File System ... 107
9.10.1. Usage... 107
9.10.2. Examples... 108

9.11. Displaying Extended GFS Information and Statistics ... 108
9.11.1. Usage... 108
9.11.2. Examples... 109

9.12. Repairing a File System ... 109
9.12.1. Usage... 109
9.12.2. Example .. 110

9.13. Context-Dependent Path Names .. 110
9.13.1. Usage... 110
9.13.2. Example .. 111

9.14. Shutting Down a GFS Cluster.. 112
9.15. Starting a GFS Cluster ... 112

10. Using the Fencing System... 115
10.1. How the Fencing System Works .. 115
10.2. Fencing Methods.. 115

10.2.1. APC MasterSwitch.. 116
10.2.2. WTI Network Power Switch... 117
10.2.3. Brocade FC Switch ... 117
10.2.4. Vixel FC Switch .. 117
10.2.5. HP RILOE Card .. 118
10.2.6. GNBD ... 118
10.2.7. Manual .. 118

11. Using GNBD .. 121
11.1. GNBD Driver and Command Usage ... 121

11.1.1. Exporting a GNBD from a Server .. 121
11.1.2. Importing a GNBD on a Client ... 123

11.2. Considerations for Using GNBD Multipath .. 123
11.2.1. Linux Page Caching .. 123
11.2.2. Lock Server Startup .. 124
11.2.3. CCS File Location .. 124
11.2.4. Fencing GNBD Server Nodes... 125

11.3. Running GFS on a GNBD Server Node .. 125
12. Using GFS init.d Scripts ... 127

12.1. GFS init.d Scripts Overview ... 127
12.2. GFS init.d Scripts Use... 127

A. Using Red Hat GFS with Red Hat Cluster Suite... 131
A.1. Terminology .. 131
A.2. Changes to Red Hat Cluster .. 132
A.3. Installation Scenarios .. 132

A.3.1. New Installations of Red Hat GFS and Red Hat Cluster Manager 132
A.3.2. Adding Red Hat GFS to an Existing Red Hat Cluster Manager Deployment 132
A.3.3. Upgrading Red Hat GFS 5.2.1 to Red Hat GFS 6.0 133

B. Upgrading GFS... 135
C. Basic GFS Examples .. 137

C.1. LOCK_GULM, RLM Embedded ... 137
C.1.1. Key Characteristics ... 137
C.1.2. Kernel Modules Loaded ... 138
C.1.3. Setup Process.. 139

C.2. LOCK_GULM, RLM External ... 142
C.2.1. Key Characteristics ... 142
C.2.2. Kernel Modules Loaded ... 143
C.2.3. Setup Process.. 144

C.3. LOCK_GULM, SLM Embedded .. 148
C.3.1. Key Characteristics ... 148
C.3.2. Kernel Modules Loaded ... 150
C.3.3. Setup Process.. 150

C.4. LOCK_GULM, SLM External ... 153
C.4.1. Key Characteristics ... 154
C.4.2. Kernel Modules Loaded ... 155
C.4.3. Setup Process.. 155

C.5. LOCK_GULM, SLM External, and GNBD ... 159
C.5.1. Key Characteristics ... 159
C.5.2. Kernel Modules Loaded ... 161
C.5.3. Setup Process.. 161

C.6. LOCK_NOLOCK ... 166
C.6.1. Key Characteristics ... 166
C.6.2. Kernel Modules Loaded ... 167
C.6.3. Setup Process.. 167

Index... 171
Colophon.. 177

Introduction
Welcome to the Red Hat GFS Administrator’s Guide. This book provides information about installing,
configuring, and maintaining GFS (Global File System). The document contains procedures for com-
monly performed tasks, reference information, and examples of complex operations and tested GFS
configurations.
HTML and PDF versions of all the official Red Hat Enterprise Linux manuals and release notes are
available online at http://www.redhat.com/docs/.

1. Audience
This book is intended primarily for Linux system administrators who are familiar with the following
activities:

• Linux system administration procedures, including kernel configuration
• Installation and configuration of shared storage networks, such as Fibre Channel SANs

2. Document Conventions
When you read this manual, certain words are represented in different fonts, typefaces, sizes, and
weights. This highlighting is systematic; different words are represented in the same style to indicate
their inclusion in a specific category. The types of words that are represented this way include the
following:

command

Linux commands (and other operating system commands, when used) are represented this way.
This style should indicate to you that you can type the word or phrase on the command line
and press [Enter] to invoke a command. Sometimes a command contains words that would be
displayed in a different style on their own (such as file names). In these cases, they are considered
to be part of the command, so the entire phrase is displayed as a command. For example:
Use the cat testfile command to view the contents of a file, named testfile, in the current
working directory.

file name

File names, directory names, paths, and RPM package names are represented this way. This style
should indicate that a particular file or directory exists by that name on your system. Examples:
The .bashrc file in your home directory contains bash shell definitions and aliases for your own
use.
The /etc/fstab file contains information about different system devices and file systems.
Install the webalizer RPM if you want to use a Web server log file analysis program.

application
This style indicates that the program is an end-user application (as opposed to system software).
For example:
Use Mozilla to browse the Web.

ii Introduction

[key]
A key on the keyboard is shown in this style. For example:
To use [Tab] completion, type in a character and then press the [Tab] key. Your terminal displays
the list of files in the directory that start with that letter.

[key]-[combination]
A combination of keystrokes is represented in this way. For example:
The [Ctrl]-[Alt]-[Backspace] key combination exits your graphical session and return you to the
graphical login screen or the console.

text found on a GUI interface
A title, word, or phrase found on a GUI interface screen or window is shown in this style. Text
shown in this style is being used to identify a particular GUI screen or an element on a GUI
screen (such as text associated with a checkbox or field). Example:
Select the Require Password checkbox if you would like your screensaver to require a password
before stopping.

top level of a menu on a GUI screen or window
A word in this style indicates that the word is the top level of a pulldown menu. If you click on
the word on the GUI screen, the rest of the menu should appear. For example:
Under File on a GNOME terminal, the New Tab option allows you to open multiple shell
prompts in the same window.
If you need to type in a sequence of commands from a GUI menu, they are shown like the
following example:
Go to Main Menu Button (on the Panel) => Programming => Emacs to start the Emacs text
editor.

button on a GUI screen or window
This style indicates that the text can be found on a clickable button on a GUI screen. For example:
Click on the Back button to return to the webpage you last viewed.

computer output

Text in this style indicates text displayed to a shell prompt such as error messages and responses
to commands. For example:
The ls command displays the contents of a directory. For example:
Desktop about.html logs paulwesterberg.png
Mail backupfiles mail reports

The output returned in response to the command (in this case, the contents of the directory) is
shown in this style.

prompt

A prompt, which is a computer’s way of signifying that it is ready for you to input something, is
shown in this style. Examples:
$

#

[stephen@maturin stephen]$

leopard login:

Introduction iii

user input
Text that the user has to type, either on the command line, or into a text box on a GUI screen, is
displayed in this style. In the following example, text is displayed in this style:
To boot your system into the text based installation program, you must type in the text com-
mand at the boot: prompt.

replaceable

Text used for examples, which is meant to be replaced with data provided by the user, is displayed
in this style. In the following example, <version-number> is displayed in this style:
The directory for the kernel source is /usr/src/<version-number>/, where
<version-number> is the version of the kernel installed on this system.

Additionally, we use several different strategies to draw your attention to certain pieces of information.
In order of how critical the information is to your system, these items are marked as a note, tip,
important, caution, or warning. For example:

Note
Remember that Linux is case sensitive. In other words, a rose is not a ROSE is not a rOsE.

Tip
The directory /usr/share/doc/ contains additional documentation for packages installed on your
system.

Important
If you modify the DHCP configuration file, the changes do not take effect until you restart the DHCP
daemon.

Caution
Do not perform routine tasks as root — use a regular user account unless you need to use the root
account for system administration tasks.

Warning
Be careful to remove only the necessary Red Hat GFS partitions. Removing other partitions could
result in data loss or a corrupted system environment.

iv Introduction

3. More to Come
The Red Hat GFS Administrator’s Guide is part of Red Hat’s growing commitment to provide useful
and timely support to Red Hat Enterprise Linux users.

3.1. Send in Your Feedback
If you spot a typo in the Red Hat GFS Administrator’s Guide, or if you have thought of a way
to make this manual better, we would love to hear from you! Please submit a report in Bugzilla
(http://www.redhat.com/bugzilla) against the product Red Hat Cluster Suite, version 3, compo-
nent rh-gfsg .
Be sure to mention the manual’s identifier:

rh-gfsg(EN)-6.0-Print-RHI (2005-08-02T11:07-0400)

If you mention this manual’s identifier, we will know exactly which version of the guide you have.
If you have a suggestion for improving the documentation, try to be as specific as possible. If you
have found an error, please include the section number and some of the surrounding text so we can
find it easily.

4. Activate Your Subscription
Before you can access service and software maintenance information, and the support documenta-
tion included in your subscription, you must activate your subscription by registering with Red Hat.
Registration includes these simple steps:

• Provide a Red Hat login
• Provide a subscription number
• Connect your system
The first time you boot your installation of Red Hat Enterprise Linux, you are prompted to register
with Red Hat using the Setup Agent. If you follow the prompts during the Setup Agent, you can
complete the registration steps and activate your subscription.
If you can not complete registration during the Setup Agent (which requires network access), you
can alternatively complete the Red Hat registration process online at http://www.redhat.com/register/.

4.1. Provide a Red Hat Login
If you do not have an existing Red Hat login, you can create one when prompted during the Setup
Agent or online at:

https://www.redhat.com/apps/activate/newlogin.html

A Red Hat login enables your access to:

• Software updates, errata and maintenance via Red Hat Network
• Red Hat technical support resources, documentation, and Knowledgebase
If you have forgotten your Red Hat login, you can search for your Red Hat login online at:

https://rhn.redhat.com/help/forgot_password.pxt

Introduction v

4.2. Provide Your Subscription Number
Your subscription number is located in the package that came with your order. If your package did not
include a subscription number, your subscription was activated for you and you can skip this step.
You can provide your subscription number when prompted during the Setup Agent or by visiting
http://www.redhat.com/register/.

4.3. Connect Your System
The Red Hat Network Registration Client helps you connect your system so that you can begin to get
updates and perform systems management. There are three ways to connect:

1. During the Setup Agent — Check the Send hardware information and Send system package
list options when prompted.

2. After the Setup Agent has been completed — From the Main Menu, go to System Tools, then
select Red Hat Network.

3. After the Setup Agent has been completed — Enter the following command from the command
line as the root user:
• /usr/bin/up2date --register

5. Recommended References
For additional references about related topics, refer to the following table:

Topic Reference Comment
Shared Data Clustering and
File Systems

Shared Data Clusters by Dilip
M. Ranade. Wiley, 2002.

Provides detailed technical
information on cluster file
system and cluster
volume-manager design.

Storage Area Networks (SANs) Designing Storage Area
Networks: A Practical
Reference for Implementing
Fibre Channel and IP SANs,
Second Edition by Tom Clark.
Addison-Wesley, 2003.

Provides a concise summary of
Fibre Channel and IP SAN
Technology.

Building SANs with Brocade
Fabric Switches by C.
Beauchamp, J. Judd, and B.
Keo. Syngress, 2001.

Best practices for building
Fibre Channel SANs based on
the Brocade family of switches,
including core-edge topology
for large SAN fabrics.

Building Storage Networks,
Second Edition by Marc Farley.
Osborne/McGraw-Hill, 2001.

Provides a comprehensive
overview reference on storage
networking technologies.

vi Introduction

Topic Reference Comment
Applications and High
Availability

Blueprints for High
Availability: Designing
Resilient Distributed Systems
by E. Marcus and H. Stern.
Wiley, 2000.

Provides a summary of best
practices in high availability.

Table 1. Recommended References Table

Chapter 1.
Red Hat GFS Overview
Red Hat GFS is a cluster file system that provides data sharing among Linux-based computers. GFS
provides a single, consistent view of the file system name space across all nodes in a cluster. It allows
applications to install and run without much knowledge of the underlying storage infrastructure. GFS
is fully compliant with the IEEE POSIX interface, allowing applications to perform file operations as
if they were running on a local file system. Also, GFS provides features that are typically required in
enterprise environments, such as quotas, multiple journals, and multipath support.
GFS provides a versatile method of networking your storage according to the performance, scalability,
and economic needs of your storage environment.
This chapter provides some very basic, abbreviated information as background to help you understand
GFS. It contains the following sections:

• Section 1.1 New and Changed Features
• Section 1.2 Performance, Scalability, and Economy
• Section 1.3 GFS Functions
• Section 1.4 GFS Software Subsystems
• Section 1.5 Before Configuring GFS

1.1. New and Changed Features
This section lists new and changed features included with the initial release of Red Hat GFS 6.0 and
Red Hat GFS 6.0 for Red Hat Enterprise Linux 3 Update 5.
New and Changed Features with the Initial Release of Red Hat GFS 6.0

• File access control lists (ACLs) and extended file attributes in GFS file systems — This release adds
the capability of setting and getting file ACLs and extended file attributes in a GFS file system. The
Linux commands setfacl and getfacl set and get ACLs. The Linux commands setfattr and
getfattr set and get file attributes. In addition, this release adds a GFS-specific mount command
option, -o acl. The new option allows users to set ACLs. For more information about the -o acl
option, refer to Section 9.2 Mounting a File System.

• Additional fencing agents — This release adds fencing agents for McData Fibre Channel (FC)
switches, Egenera BladeFrame systems, and xCAT (Extreme Cluster Administration Toolkit) clus-
ters.

• Initialization scripts — This release adds init.d scripts for the pool, ccsd,
lock_gulmd, and gfs modules. For more information about the scripts, refer to
Chapter 12 Using GFS init.d Scripts.

• Configurable node-failure detection parameters — This release adds optional parameters for setting
heartbeat rate and allowed misses. Together, the parameters determine the time interval allowed
without response from a node before the node is considered to have failed. For more information,
refer to Section 6.5 Creating the cluster.ccs File.

• Removal of license mechanism — Previous GFS releases required a license file that defined the
term of use and which GFS features were enabled. This release does not require a license file.

2 Chapter 1. Red Hat GFS Overview

• Initial-configuration druid via Red Hat Cluster Suite — When GFS is installed with Red Hat Cluster
Suite, a configuration druid is available with Cluster Suite for initial configuration of GFS. For more
information about the druid, refer to the Cluster Suite documentation.

New and Changed Features with Red Hat GFS 6.0 for Red Hat Enterprise Linux 3 Update 5

• Enhanced gfs_fsck performance and changes to the gfs_fsck command — The gfs_fsck
function performs 10 times as fast as gfs_fsck in releases earlier than Red Hat GFS 6.0 for Red
Hat Enterprise Linux 3 Update 5. In addition, the enhanced gfs_fsck function includes changes
to certain command options. For more information about changes to the command options, refer to
Section 9.12 Repairing a File System.

• Optional usedev key available for use with the nodes.ccs file (nodes.ccs:nodes) — The
value of the usedev key is a named device from the ip_interfaces section. If usedev is
present, GULM uses the IP address from that device in the ip_interfaces section. Otherwise
GULM uses the IP address from libresolv, as it does in releases earlier than Red Hat GFS 6.0
for Red Hat Enterprise Linux 3 Update 5. For more information about the usedev key, refer to
Section 6.7 Creating the nodes.ccs File

For information about using GFS with Red Hat Cluster Suite, refer to
Appendix A Using Red Hat GFS with Red Hat Cluster Suite. For GFS upgrade instructions, refer to
Appendix B Upgrading GFS.

1.2. Performance, Scalability, and Economy
You can deploy GFS in a variety of configurations to suit your needs for performance, scalability,
and economy. For superior performance and scalability, you can deploy GFS in a cluster that is
connected directly to a SAN. For more economical needs, you can deploy GFS in a cluster that is
connected to a LAN with servers that use GNBD (Global Network Block Device). A GNBD pro-
vides block-level storage access over an Ethernet LAN. (For more information about GNBD, refer to
Chapter 11 Using GNBD.)
The following sections provide examples of how GFS can be deployed to suit your needs for perfor-
mance, scalability, and economy:

• Section 1.2.1 Superior Performance and Scalability
• Section 1.2.2 Performance, Scalability, Moderate Price
• Section 1.2.3 Economy and Performance

Note
The deployment examples in this chapter reflect basic configurations; your needs might require a
combination of configurations shown in the examples.

1.2.1. Superior Performance and Scalability
You can obtain the highest shared-file performance when applications access storage directly. The
GFS SAN configuration in Figure 1-1 provides superior file performance for shared files and file
systems. Linux applications run directly on GFS clustered application nodes. Without file protocols
or storage servers to slow data access, performance is similar to individual Linux servers with direct-
connect storage; yet, each GFS application node has equal access to all data files. GFS supports over
300 GFS application nodes.

Chapter 1. Red Hat GFS Overview 3

SAN

Fabric

FC or iSCSI

SAN

GFS

Applications

Shared Files

Figure 1-1. GFS with a SAN

1.2.2. Performance, Scalability, Moderate Price
Multiple Linux client applications on a LAN can share the same SAN-based data as shown in
Figure 1-2. SAN block storage is presented to network clients as block storage devices by GNBD
servers. From the perspective of a client application, storage is accessed as if it were directly attached
to the server in which the application is running. Stored data is actually on the SAN. Storage devices
and data can be equally shared by network client applications. File locking and sharing functions are
handled by GFS for each network client.

Note
Clients implementing ext2 and ext3 file systems can be configured to access their own dedicated
slice of SAN storage.

4 Chapter 1. Red Hat GFS Overview

LAN

Clients

GNBD

servers

SAN

Fabric

GFS

Applications

Shared Files

Figure 1-2. GFS and GNBD with a SAN

1.2.3. Economy and Performance
Figure 1-3 shows how Linux client applications can take advantage of an existing Ethernet topology
to gain shared access to all block storage devices. Client data files and file systems can be shared with
GFS on each client. Application failover can be fully automated with Red Hat Cluster Suite.

Chapter 1. Red Hat GFS Overview 5

LAN

Clients

GNBD

servers

Disk

A

GFS

Applications

Disk

B

Disk

D

Disk

C

Disk

E

Disk

F

Shared Files

Figure 1-3. GFS and GNBD with Directly Connected Storage

1.3. GFS Functions
GFS is a native file system that interfaces directly with the VFS layer of the Linux kernel file-system
interface. GFS is a cluster file system that employs distributed metadata and multiple journals for
optimal operation in a cluster.
GFS provides the following main functions:

• Cluster volume management
• Lock management
• Cluster management, fencing, and recovery
• Cluster configuration management

1.3.1. Cluster Volume Management
Cluster volume management provides simplified management of volumes and the ability to dynam-
ically extend file system capacity without interrupting file-system access. With cluster volume man-
agement, you can aggregate multiple physical volumes into a single, logical device across all nodes in
a cluster.
Cluster volume management provides a logical view of the storage to GFS, which provides flexibility
for the administrator in how the physical storage is managed. Also, cluster volume management pro-
vides increased availability because it allows increasing the storage capacity without shutting down
the cluster. Refer to Chapter 5 Using the Pool Volume Manager for more information about cluster
volume management.

6 Chapter 1. Red Hat GFS Overview

1.3.2. Lock Management
A lock management mechanism is a key component of any cluster file system. The Red Hat GFS
lock-management mechanism provides the following lock managers:

• Single Lock Manager (SLM) — A simple centralized lock manager that can be configured to run
either on a file system node or on a separate dedicated lock manager node.

• Redundant Lock Manager (RLM) — A high-availability lock manager. It allows the configuration
of a master and multiple hot-standby failover lock manager nodes. The failover nodes provide
failover in case the master lock manager node fails.

The lock managers also provide cluster management functions that control node recovery. Refer to
Chapter 8 Using Clustering and Locking Systems for a description of the GFS lock protocols.

1.3.3. Cluster Management, Fencing, and Recovery
Cluster management functions in GFS monitor node status through heartbeat signals to determine
cluster membership. Also, cluster management keeps track of which nodes are using each GFS file
system, and initiates and coordinates the recovery process when nodes fail. This process involves
recovery coordination from the fencing system, the lock manager, and the file system. The cluster
management functions are embedded in each of the lock management modules described earlier in
Lock Management. Refer to Chapter 8 Using Clustering and Locking Systems for more information
on cluster management.
Fencing is the ability to isolate or "fence off" a cluster node when that node loses its heartbeat no-
tification with the rest of the cluster nodes. Fencing ensures that data integrity is maintained during
the recovery of a failed cluster node. GFS supports a variety of automated fencing methods and one
manual method. In addition, GFS provides the ability to configure each cluster node for cascaded
fencing with the automated fencing methods. Refer to Chapter 10 Using the Fencing System for more
information about the GFS fencing capability.

Warning
Manual fencing should not be used in a production environment. Manual fencing depends on human
intervention whenever a node needs recovery. Cluster operation is halted during the intervention.

Recovery is the process of controlling reentry of a node into a cluster after the node has been fenced.
Recovery ensures that storage data integrity is maintained in the cluster while the previously fenced
node is reentering the cluster. As stated earlier, recovery involves coordination from fencing, lock
management, and the file system.

1.3.4. Cluster Configuration Management
Cluster configuration management provides a centralized mechanism for the configuration and
maintenance of configuration files throughout the cluster. It provides high-availability access to
configuration-state information for all nodes in the cluster.
For information about cluster configuration management refer
to Chapter 6 Creating the Cluster Configuration System Files and
Chapter 7 Using the Cluster Configuration System.

Chapter 1. Red Hat GFS Overview 7

1.4. GFS Software Subsystems
GFS consists of the following subsystems:

• Cluster Configuration System (CCS)
• Fence
• Pool
• LOCK_GULM
• LOCK_NOLOCK
Table 1-1 summarizes the GFS Software subsystems and their components.

Software Subsystem Components Description
Cluster Configuration
System (CCS)

ccs_tool Command used to create CCS archives.

ccs_read Diagnostic and testing command that is
used to retrieve information from
configuration files through ccsd.

ccsd CCS daemon that runs on all cluster nodes
and provides configuration file data to
cluster software.

ccs_servd CCS server daemon that distributes CCS
data from a single server to ccsd daemons
when a shared device is not used for storing
CCS data.

Fence fence_node Command used by lock_gulmd when a
fence operation is required. This command
takes the name of a node and fences it
based on the node’s fencing configuration.

fence_apc Fence agent for APC power switch.
fence_wti Fence agent for WTI power switch.

fence_brocade Fence agent for Brocade Fibre Channel
switch.

fence_mcdata Fence agent for McData Fibre Channel
switch.

fence_vixel Fence agent for Vixel Fibre Channel switch.

fence_rib Fence agent for RIB card.
fence_gnbd Fence agent used with GNBD storage.

fence_egenera Fence agent used with Egenera BladeFrame
system.

fence_xcat Fence agent used with xCAT-managed
cluster.

8 Chapter 1. Red Hat GFS Overview

Software Subsystem Components Description
fence_manual Fence agent for manual interaction.

WARNING: Manual fencing should not be
used in a production environment. Manual
fencing depends on human intervention
whenever a node needs recovery. Cluster
operation is halted during the intervention.

fence_ack_manual User interface for fence_manual agent.

Pool pool.o Kernel module implementing the pool
block-device driver.

pool_assemble Command that activates and deactivates
pool volumes.

pool_tool Command that configures pool volumes
from individual storage devices.

pool_info Command that reports information about
system pools.

pool_grow Command that expands a pool volume.

pool_mp Command that manages pool multipathing.
LOCK_GULM lock_gulm.o Kernel module that is installed on GFS

nodes using the LOCK_GULM lock
module.

lock_gulmd Server/daemon that runs on each node and
communicates with all nodes in GFS
cluster.

gulm_tool Command that configures and debugs the
lock_gulmd server.

LOCK_NOLOCK lock_nolock.o Kernel module installed on a node using
GFS as a local file system.

GFS gfs.o Kernel module that implements the GFS file
system and is loaded on GFS cluster nodes.

lock_harness.o Kernel module that implements the GFS
lock harness into which GFS lock modules
can plug.

gfs_mkfs Command that creates a GFS file system on
a storage device.

gfs_tool Command that configures or tunes a GFS
file system. This command can also gather
a variety of information about the file
system.

gfs_quota Command that manages quotas on a
mounted GFS file system.

gfs_grow Command that grows a mounted GFS file
system.

gfs_jadd Command that adds journals to a mounted
GFS file system.

Chapter 1. Red Hat GFS Overview 9

Software Subsystem Components Description
gfs_fsck Command that repairs an unmounted GFS

file system.
GNBD gnbd.o Kernel module that implements the GNBD

device driver on clients.
gnbd_serv.o Kernel module that implements the GNBD

server. It allows a node to export local
storage over the network.

gnbd_export Command to create, export and manage
GNBDs on a GNBD server.

gnbd_import Command to import and manage GNBDs
on a GNBD client.

Upgrade gfs_conf Command that retrieves from a cidev
configuration information from earlier
versions of GFS.

Table 1-1. GFS Software Subsystem Components

1.5. Before Configuring GFS
Before you install and configure GFS, note the following key characteristics of your GFS configura-
tion:

Cluster name
Determine a cluster name for your GFS cluster. The cluster name is required in the form of a pa-
rameter variable, ClusterName, later in this book.The cluster name can be 1 to 16 characters long.
For example, this book uses a cluster name alpha in some example configuration procedures.

Number of file systems
Determine how many GFS file systems to create initially. (More file systems can be added later.)

File system name
Determine a unique name for each file system. Each file system name is required in the form of
a parameter variable, FSName, later in this book. For example, this book uses file system names
gfs1 and gfs2 in some example configuration procedures.

Number of nodes
Determine how many nodes will mount the file systems. Note the hostname and IP address of
each node for use in configuration files later.

LOCK_GULM servers
Determine the number of LOCK_GULM servers. Multiple LOCK_GULM servers (available
with RLM) provide redundancy. RLM requires a minimum of three nodes, but no more than five
nodes. Information about LOCK_GULM servers is required for a CCS (Cluster Configuration
System) file, cluster.ccs. Refer to Section 6.5 Creating the cluster.ccs File for informa-
tion about the cluster.ccs file.

10 Chapter 1. Red Hat GFS Overview

GNBD server nodes
If you are using GNBD, determine how many GNBD server nodes are needed. Note the hostname
and IP address of each GNBD server node for use in configuration files later.

Fencing method
Determine the fencing method for each GFS node. If you are using GNBD multipath,
determine the fencing method for each GNBD server node (node that exports GNBDs to
GFS nodes). Information about fencing methods is required later in this book for the CCS
files, fence.ccs and nodes.ccs. (Refer to Section 6.6 Creating the fence.ccs File and
Section 6.7 Creating the nodes.ccs File for more information.) To help determine the type of
fencing methods available with GFS, refer to Chapter 10 Using the Fencing System. When
using RLM, you must use a fencing method that shuts down and reboots the node being fenced.

Storage devices and partitions
Determine the storage devices and partitions to be used for creating pool volumes in the file sys-
tems. Make sure to account for space on one or more partitions for storing cluster configuration
information as follows: 2 KB per GFS node or 2 MB total, whichever is larger.

Chapter 2.
System Requirements
This chapter describes the system requirements for Red Hat GFS 6.0 and consists of the following
sections:

• Section 2.1 Platform Requirements
• Section 2.2 TCP/IP Network
• Section 2.3 Fibre Channel Storage Network
• Section 2.4 Fibre Channel Storage Devices
• Section 2.5 Network Power Switches
• Section 2.6 Console Access
• Section 2.7 I/O Fencing

2.1. Platform Requirements
Table 2-1 shows the platform requirements for GFS.

Operating System Hardware Architecture RAM

Red Hat Enterprise Linux AS, ES, or
WS, Version 3 Update 2 or later

ia64, x86-64, x86
SMP supported

256 MB, minimum

Table 2-1. Platform Requirements

2.2. TCP/IP Network
All GFS nodes must be connected to a TCP/IP network. Network communication is critical to the
operation of the GFS cluster, specifically to the clustering and locking subsystems. For optimal per-
formance and security, it is recommended that a private, dedicated, switched network be used for GFS.
GFS subsystems do not use dual-network interfaces for failover purposes.

2.3. Fibre Channel Storage Network
Table 2-2 shows requirements for GFS nodes that are to be connected to a Fibre Channel SAN.

12 Chapter 2. System Requirements

Requirement Description
HBA (Host Bus Adapter) One HBA minimum per GFS node
Connection method Fibre Channel switch

Note: If an FC switch is used for I/O fencing nodes, you
may want to consider using Brocade, McData, or Vixel FC
switches, for which GFS fencing agents exist.
Note: When a small number of nodes is used, it may be
possible to connect the nodes directly to ports on the
storage device.

Note: FC drivers may not work reliably with FC hubs.
Table 2-2. Fibre Channel Network Requirements

2.4. Fibre Channel Storage Devices
Table 2-3 shows requirements for Fibre Channel devices that are to be connected to a GFS cluster.

Requirement Description
Device Type FC RAID array or JBOD

Note: Make sure that the devices can operate reliably when
heavily accessed simultaneously from multiple initiators.

Note: Make sure that your GFS configuration does not
exceed the number of nodes an array or JBOD supports.

Size 2 TB maximum per GFS file system. Linux 2.4 kernels do
not support devices larger than 2 TB; that limits the size of
any GFS file system to 2 TB.

Table 2-3. Fibre Channel Storage Device Requirements

2.5. Network Power Switches
GFS provides fencing agents for APC and WTI network power switches.

2.6. Console Access
Make sure that you have console access to each GFS node. Console access to each node ensures that
you can monitor the cluster and troubleshoot kernel problems.

2.7. I/O Fencing
You need to configure each node in your GFS cluster for at least one form of I/O fencing. For more
information about fencing options, refer to Section 10.2 Fencing Methods.

Chapter 3.
Installing GFS
This chapter describes how to install GFS and includes the following sections:

• Section 3.1 Prerequisite Tasks
• Section 3.2 Installation Tasks

• Section 3.2.1 Installing GFS RPMs
• Section 3.2.2 Loading the GFS Kernel Modules

Note
For information about installing and using GFS with Red Hat Cluster Suite, refer to
Appendix A Using Red Hat GFS with Red Hat Cluster Suite.

3.1. Prerequisite Tasks
Before installing GFS software, make sure that you have noted the key characteristics of your GFS
configuration (refer to Section 1.5 Before Configuring GFS) and have completed the following tasks:

• Installed prerequisite software
• Specified a persistent major number (optional)

3.1.1. Prerequisite Software
Make sure that you have installed the following software:

• perl-Net-Telnet module
• Clock synchronization software
• Stunnel utility (optional)

3.1.1.1. perl-Net-Telnet Module
The perl-Net-Telnet module is used by several fencing agents and should be installed on all GFS
nodes. The perl-Net-Telnet module should be installed before installing GFS; otherwise, GFS
will not install.
You can install the perl-Net-Telnet module from the Red Hat GFS ISO.

14 Chapter 3. Installing GFS

3.1.1.2. Clock Synchronization Software
Make sure that each GFS node is running clock synchronization software. The system clocks in GFS
nodes need to be within a few minutes of each other to prevent unnecessary inode time-stamp updates.
If the node clocks are not synchronized, the inode time stamps will be updated unnecessarily, severely
impacting cluster performance. Refer to Section 9.9 Configuring atime Updates for additional infor-
mation.

Note
One example of time synchronization software is the Network Time Protocol (NTP) software. You can
find more information about NTP at http://www.ntp.org.

3.1.1.3. Stunnel Utility
The Stunnel utility needs to be installed only on nodes that use the HP RILOE PCI card for I/O fenc-
ing. (For more information about fencing with the HP RILOE card, refer to HP RILOE Card on page
147.) Verify that the utility is installed on each of those nodes by looking for /usr/sbin/stunnel.
The Stunnel utility is available via up2date.

3.1.2. Specifying a Persistent Major Number
The major number is set dynamically when the pool.o module is loaded (either interactively or
through an init.d script). In earlier releases of GFS, the major number was set to 121 each time
pool.o was loaded. If you want to specify a persistent major number rather than a dynamic major
number, edit the /etc/modules.conf file to include the following line, where MajorNumber is
the major number that you want to use:

options pool pool_major=MajorNumber

For example, to specify a major number of 121, edit /etc/modules.conf to include the following
line:

options pool pool_major=121

You need to edit the /etc/modules.conf on each node running pool.

3.2. Installation Tasks
To install GFS, perform the following steps:

1. Install GFS RPMs.
2. Load the GFS kernel modules.

Chapter 3. Installing GFS 15

3.2.1. Installing GFS RPMs
Installing GFS RPMs consists of acquiring and installing two GFS RPMs: the GFS tools RPM
(for example, GFS-6.0.2.20-1.i686.rpm) and the GFS kernel-modules RPM (for example,
GFS-modules-smp-6.0.2.20-1.i686.rpm).

Note
You must install the GFS tools RPM before installing the GFS kernel-modules RPM.

To install GFS RPMs, follow these steps:

1. Acquire the GFS RPMs according to the kernels in the GFS nodes. Copy or download the RPMs
to each GFS node.

Note
Make sure that you acquire the appropriate GFS kernel-modules RPM for each kernel type.
For example, the following GFS kernel-modules RPM is for an SMP or hugemem kernel:
GFS-modules-smp-6.0.2.20-1.i686.rpm

The GFS tools RPM is common to all kernels.

2. At each node, install the GFS tools RPM using the rpm -Uvh command. For example:
rpm -Uvh GFS-6.0.2.20-1.i686.rpm

3. At each node, install the GFS kernel-modules RPM using the rpm -Uvh command. For exam-
ple:
rpm -Uvh GFS-modules-smp-6.0.2.20-1.i686.rpm

4. At each node, issue the rpm -qa command to check the GFS version as follows:
rpm -qa | grep GFS

This step verifies that the GFS software has been installed; it lists the GFS software installed in
the previous step.

3.2.2. Loading the GFS Kernel Modules
Once the GFS RPMs have been installed on the GFS nodes, the following GFS kernel modules need
to be loaded into the running kernel before GFS can be set up and used:

• pool.o

• lock_harness.o

• lock_gulm.o

• gfs.o

16 Chapter 3. Installing GFS

Note
The GFS kernel modules must be loaded into a GFS node each time the node is started. It is recom-
mended that you use the init.d scripts included with GFS to automate loading the GFS kernel mod-
ules. For more information about GFS init.d scripts, refer to Chapter 12 Using GFS init.d Scripts.

Note
The procedures in this section are for a GFS configuration that uses LOCK_GULM. If you are using
LOCK_NOLOCK, refer to Appendix C Basic GFS Examples for information about which GFS kernel
modules you should load.

To load the GFS kernel modules, follow these steps:

1. Run depmod -a. For example:
depmod -a

Note
Run this only once after RPMs are installed.

2. Load pool.o and dependent files as follows:
modprobe pool

Note
To specify a persistent major number, edit /etc/modules.conf before loading pool.o. Refer
to Section 3.1.2 Specifying a Persistent Major Number

3. Load lock_gulm.o and dependent files as follows:
modprobe lock_gulm

4. Load gfs.o and dependent files as follows:
modprobe gfs

Chapter 4.
Initial Configuration
This chapter describes procedures for initial configuration of GFS and contains the following sections:

• Section 4.1 Prerequisite Tasks
• Section 4.2 Initial Configuration Tasks

• Section 4.2.1 Setting Up Logical Devices
• Section 4.2.2 Setting Up and Starting the Cluster Configuration System
• Section 4.2.3 Starting Clustering and Locking Systems
• Section 4.2.4 Setting Up and Mounting File Systems

Note
If you are using GFS with Red Hat Cluster, you can configure GFS with GFS Druid.
For information about configuring and using GFS with Red Hat Cluster Suite, refer to
Appendix A Using Red Hat GFS with Red Hat Cluster Suite.

4.1. Prerequisite Tasks
Before setting up the GFS software, make sure that you have noted the key characteristics
of your GFS configuration (refer to Section 1.5 Before Configuring GFS) and have loaded
the GFS modules into each GFS node (refer to Chapter 3 Installing GFS). In addition,
if you are using GNBD multipath, make sure that you understand GNBD multipath
considerations (refer to Section 6.4 GNBD Multipath Considerations for CCS Files and
Section 11.2 Considerations for Using GNBD Multipath).

4.2. Initial Configuration Tasks
Initial configuration consists of the following tasks:

1. Setting up logical devices (pools).
2. Setting up and starting the Cluster Configuration System (CCS).
3. Starting clustering and locking systems.
4. Setting up and mounting file systems.

18 Chapter 4. Initial Configuration

Note
GFS kernel modules must be loaded prior to performing initial configuration tasks. Refer to
Section 3.2.2 Loading the GFS Kernel Modules.

Note
For examples of GFS configurations, refer to Appendix C Basic GFS Examples.

The following sections describe the initial configuration tasks.

4.2.1. Setting Up Logical Devices
To set up logical devices (pools) follow these steps:

1. Create file system pools.
a. Create pool configuration files. Refer to

Section 5.4 Creating a Configuration File for a New Volume.
b. Create a pool for each file system. Refer to Section 5.5 Creating a Pool Volume.

Command usage:
pool_tool -c ConfigFile

2. Create a CCS pool.
a. Create pool configuration file. Refer to

Section 5.4 Creating a Configuration File for a New Volume.
b. Create a pool to be the Cluster Configuration Archive (CCA) device. Refer to

Section 5.5 Creating a Pool Volume.
Command usage:
pool_tool -c ConfigFile

3. At each node, activate pools. Refer to Section 5.6 Activating/Deactivating a Pool Volume.
Command usage:
pool_assemble

Note
You can use GFS init.d scripts included with GFS to automate activating and deactivating pools.
For more information about GFS init.d scripts, refer to Chapter 12 Using GFS init.d Scripts.

Chapter 4. Initial Configuration 19

4.2.2. Setting Up and Starting the Cluster Configuration System
To set up and start the Cluster Configuration System, follow these steps:

1. Create CCS configuration files and place them into a temporary directory. Refer to
Chapter 6 Creating the Cluster Configuration System Files.

2. Create a CCS archive on the CCA device. (The CCA device is the pool created in Step 2 of
Section 4.2.1 Setting Up Logical Devices.) Put the CCS files (created in Step 1) into the CCS
archive. Refer to Section 7.1 Creating a CCS Archive.
Command usage:
ccs_tool create Directory CCADevice.

3. At each node, start the CCS daemon, specifying the CCA device at the command line. Refer to
Section 7.2 Starting CCS in the Cluster.
Command usage:
ccsd -d CCADevice

Note
You can use GFS init.d scripts included with GFS to automate starting and stopping the
Cluster Configuration System. For more information about GFS init.d scripts, refer to
Chapter 12 Using GFS init.d Scripts.

4.2.3. Starting Clustering and Locking Systems
To start clustering and locking systems, start lock_gulmd at each node. Refer to
Section 8.2.3 Starting LOCK_GULM Servers.
Command usage:
lock_gulmd

Note
You can use GFS init.d scripts included with GFS to automate starting and stopping lock_gulmd.
For more information about GFS init.d scripts, refer to Chapter 12 Using GFS init.d Scripts.

4.2.4. Setting Up and Mounting File Systems
To set up and mount file systems, follow these steps:

1. Create GFS file systems on pools created in Step 1 of
Section 4.2.2 Setting Up and Starting the Cluster Configuration System. Choose a unique
name for each file system. Refer to Section 9.1 Making a File System.
Command usage:

20 Chapter 4. Initial Configuration

gfs_mkfs -p lock_gulm -t ClusterName:FSName -j NumberJournals
BlockDevice

2. At each node, mount the GFS file systems. Refer to Section 9.2 Mounting a File System.
Command usage:
mount -t gfs BlockDevice MountPoint

mount -t gfs -o acl BlockDevice MountPoint

The -o acl mount option allows manipulating file ACLs. If a file system is mounted without
the -o acl mount option, users are allowed to view ACLs (with getfacl), but are not allowed
to set them (with setfacl).

Note
You can use GFS init.d scripts included with GFS to automate mounting and
unmounting GFS file systems. For more information about GFS init.d scripts, refer to
Chapter 12 Using GFS init.d Scripts.

Chapter 5.
Using the Pool Volume Manager
This chapter describes the GFS volume manager — named Pool — and its commands. The chapter
consists of the following sections:

• Section 5.1 Overview of GFS Pool Volume Manager
• Section 5.2 Synopsis of Pool Management Commands
• Section 5.4 Creating a Configuration File for a New Volume
• Section 5.3 Scanning Block Devices
• Section 5.5 Creating a Pool Volume
• Section 5.6 Activating/Deactivating a Pool Volume
• Section 5.7 Displaying Pool Configuration Information
• Section 5.8 Growing a Pool Volume
• Section 5.9 Erasing a Pool Volume
• Section 5.10 Renaming a Pool Volume
• Section 5.11 Changing a Pool Volume Minor Number
• Section 5.12 Displaying Pool Volume Information
• Section 5.13 Using Pool Volume Statistics
• Section 5.14 Adjusting Pool Volume Multipathing

5.1. Overview of GFS Pool Volume Manager
Pool is a GFS software subsystem that presents physical storage devices (such as disks or RAID ar-
rays) as logical volumes to GFS cluster nodes. Pool can aggregate storage devices either by concate-
nating the underlying storage or by striping the storage using RAID 0. Pool is a cluster-wide volume
manager, presenting logical volumes to each GFS node as if the storage were attached directly to each
node. Because Pool is a cluster-wide volume manager, changes made to a volume by one GFS node
are visible to all other GFS nodes in a cluster.
Pool is a dynamically loadable kernel module, pool.o. When pool.o is loaded, it gets registered
as a Linux kernel block-device driver. Before pool devices can be used, this driver module must be
loaded into the kernel. (Once the driver module is loaded, the pool_assemble command can be run
to activate pools.)
Pool includes a set of user commands that can be executed to configure and manage specific pool
devices. Those commands are summarized in the next section.
More advanced, special-purpose features of the Pool volume manager are described later in this chap-
ter.

22 Chapter 5. Using the Pool Volume Manager

5.2. Synopsis of Pool Management Commands
Four commands are available to manage pools:

• pool_tool

• pool_assemble

• pool_info

• pool_mp

The following sections briefly describe the commands and provide references to other sections in this
chapter, where more detailed information about the commands and their use is described.

5.2.1. pool_tool
The pool_tool command provides a variety of functions for manipulating and controlling pools
(refer to Table 5-1 and Table 5-2). Some pool_tool functions — such as creating a pool and growing
a pool — require that a file be specified on the command line to provide inputs for the command.
Other pool_tool functions — such as erasing a pool, renaming a pool, changing a minor number,
and printing a pool configuration — act on existing pools and require one or more pool names to be
specified on the command line.

Flag Function Section/Page Reference
-c Create a pool Section 5.5 Creating a Pool Volume
-e Erase a pool Section 5.9 Erasing a Pool Volume
-s Scan devices Section 5.3 Scanning Block Devices
-g Grow a pool Section 5.8 Growing a Pool Volume

Note: The pool_tool -g command supersedes
the pool_grow command as of GFS 5.2.
Although the pool_grow command is still
available, it is not supported in GFS 5.2 and
later.

-r Rename a pool Section 5.10 Renaming a Pool Volume
Note: In releases before GFS 5.2, the -r flag
had a different usage.

-p Print a pool configuration Section 5.7 Displaying Pool Configuration Information

-m Change a pool minor
number

Section 5.11 Changing a Pool Volume Minor Number

Table 5-1. pool_tool Command Functions

Flag Option
-D Enable debugging output.

-h Help. Show usage information.
-O Override prompts.

Chapter 5. Using the Pool Volume Manager 23

Flag Option
-q Be quiet. Do not display output from the command.
-V Display command version information, then exit.
-v Verbose operation.

Table 5-2. pool_tool Command Options

5.2.2. pool_assemble
The pool_assemble command activates and deactivates pools on a system (refer to Table 5-3 and
Table 5-4). One or more pool names can be specified on the command line, indicating the pools to be
activated or deactivated. If no pools are specified on the command line, all pools will be acted upon.

Flag Function Section/Page Reference
-a Activate pool(s) Section 5.6 Activating/Deactivating a Pool Volume

-r Deactivate pool(s) Section 5.6 Activating/Deactivating a Pool Volume

Table 5-3. pool_assemble Command Functions

Flag Option
-D Enable debugging output.

-h Help. Show usage information.
-q Be quiet. Do not display output from the command.
-V Display command version information, then exit.

-v Verbose operation.
Table 5-4. pool_assemble Command Options

5.2.3. pool_info
The pool_info command scans disks directly and displays information about activated pools in
a system; that is, pools that have been assembled with the pool_assemble command (refer to
Table 5-5 and Table 5-6). Information about pools that are present but not assembled is excluded from
the information displayed with a pool_info command. One or more pool names can be specified on
the command line to select information about specific pools. If no pool name is specified, information
on all pools is returned.

Flag Function Section/Page Reference
-c Clear statistics Section 5.13 Using Pool Volume Statistics

24 Chapter 5. Using the Pool Volume Manager

Flag Function Section/Page Reference
-i Display information Section 5.12 Displaying Pool Volume Information

-s Display statistics Section 5.13 Using Pool Volume Statistics
-p Display an active

configuration
Section 5.7 Displaying Pool Configuration Information

Table 5-5. pool_info Command Functions

Flag Option
-D Enable debugging output.

-H Show capacity in human readable form.
-h Help. Show usage information.
-q Be quiet. Do not display output from the command.

-t Set time interval for continual statistics updates.
-V Display command version information, then exit.
-v Verbose operation.

Table 5-6. pool_info Command Options

5.2.4. pool_mp
The pool_mp command is for managing multipathing on running pools (refer to Table 5-7 and
Table 5-8). One or more pool names can be specified on the command line to adjust multipathing on
specific pools. If no pools are specified on the command line, all pools will be acted upon.

Flag Function Section/Page Reference
-m Tune multipathing Section 5.14 Adjusting Pool Volume Multipathing

-r Restore failed paths Section 5.14 Adjusting Pool Volume Multipathing

Table 5-7. pool_mp Command Functions

Flag Option
-D Enable debugging output.

-h Help. Show usage information.
-q Be quiet. Do not display output from the command.

-V Display command version information, then exit.

Chapter 5. Using the Pool Volume Manager 25

Flag Option
-v Verbose operation.

Table 5-8. pool_mp Command Options

5.3. Scanning Block Devices
Scanning block devices provides information about the availability and characteristics of the devices.
That information is important for creating a pool configuration file. You can scan block devices by
issuing the pool_tool command with the -s option. Issuing the pool_tool command with the -s
option scans all visible block devices and reports whether they have an Ext2 or Ext3 file system, LVM
version 1 labels, a partition table, a pool label, or an unknown label on them.

Note
The pool_tool -s command does not detect ondisk labels other than those mentioned in the pre-
ceding paragraph.

5.3.1. Usage
pool_tool -s

5.3.2. Example
In this example, the response to the command displays information about one GFS file system, other
file systems that have no labels, and a local file system.

pool_tool -s
Device Pool Label
====== ==========
/dev/pool/stripe-128K <- GFS filesystem ->
/dev/sda <- partition information ->
/dev/sda1 stripe-128K
/dev/sda2 stripe-128K
/dev/sda3 stripe-128K
/dev/sda4 <- partition information ->
/dev/sda5 <- unknown ->
/dev/sda6 <- unknown ->
/dev/sda7 <- unknown ->
/dev/sda8 <- unknown ->
/dev/sdb <- partition information ->
/dev/sdb1 <- unknown ->
/dev/sdb2 <- unknown ->
/dev/sdb3 <- unknown ->

. .

. .

. .
/dev/sdd4 <- partition information ->
/dev/sdd5 <- unknown ->
/dev/sdd6 <- unknown ->
/dev/sdd7 <- unknown ->

26 Chapter 5. Using the Pool Volume Manager

/dev/sdd8 <- unknown ->
/dev/hda <- partition information ->
/dev/hda1 <- EXT2/3 filesystem ->
/dev/hda2 <- swap device ->
/dev/hda3 <- EXT2/3 filesystem ->

5.4. Creating a Configuration File for a New Volume
A pool configuration file is used as input to the pool_tool command when creating or growing a
pool volume. The configuration file defines the name and layout of a single pool volume. Refer to
Figure 5-1 for the pool configuration file format. Refer to Table 5-9 for descriptions of the configura-
tion file keywords and variables.
An arbitrary name can be used for a pool configuration file; however, for consistency, it is recom-
mended that you name the file using the pool name followed by the .cfg extension (poolname.cfg).
For example, the pool configuration file for a pool named pool0 would be defined in configuration
file pool0.cfg.
Before creating a configuration file, you can check to see what devices are available by using the
pool_tool command with the -s option.

poolname name
minor number
subpools number
subpool id stripe devices [type]
pooldevice subpool id device

Figure 5-1. File Structure: Pool Configuration File

File Line and
Keyword

Variable Description

poolname name The name of the pool device that appears in the
/dev/pool/ directory.

minor number Assigns a device minor number (0 to 64) to a
pool. If number is specified as 0 (or if the minor
line is omitted), the minor number of the pool is
assigned dynamically. The default value is 0.

subpools number Represents the total number of subpools in the
pool. The number value should be set to a
value of 1 unless special data or journal
subpools are used.

Chapter 5. Using the Pool Volume Manager 27

File Line and
Keyword

Variable Description

subpool id stripe devices
[type]

The details of each subpool:
id is the subpool identifier. Number the
subpools in order beginning with 0.
stripe is the stripe size in sectors (512 bytes
per sector) for each device. A value of 0
specifies no striping (concatenation).
devices specifies the number of devices in
the subpool.
type is optional and specifies the label type to
attach to the subpool. Values of gfs_data or
gfs_journal are acceptable. The default value
is gfs_data.

pooldevice subpool id device Adds a storage device to a subpool:
subpool specifies the subpool identifier to
which the device is to be added.
id is the device identifier. Number the devices
in order beginning with 0.
device specifies the device node to be used
(for example, /dev/sda1).

Table 5-9. Pool Configuration File Keyword and Variable Descriptions

5.4.1. Examples
This example creates a 4-disk pool named pool0 that has a stripe size of 64K and an assigned minor
number of 1:

poolname pool0
minor 1 subpools 1
subpool 0 128 4 gfs_data
pooldevice 0 0 /dev/sdb1
pooldevice 0 1 /dev/sdc1
pooldevice 0 2 /dev/sdd1
pooldevice 0 3 /dev/sde1

This example creates a 4-disk pool named pool1 that has a dynamic minor number composed of a
striped subpool and a concatenated subpool:

poolname pool1
minor 0
subpools 2
striped subpool
subpool 0 128 2 gfs_data
concatenated subpool
subpool 1 0 2 gfs_data
pooldevice 0 0 /dev/sdb1
pooldevice 0 1 /dev/sdc1

pooldevice 1 0 /dev/sdd1
pooldevice 1 1 /dev/sde1

28 Chapter 5. Using the Pool Volume Manager

5.5. Creating a Pool Volume
Once a configuration file is created or edited (refer to
Section 5.4 Creating a Configuration File for a New Volume), a pool volume can be created using the
pool_tool command. Because the pool_tool command writes labels to the beginning of the
devices or partitions, the new pool volume’s devices or partitions must be accessible to the system.
To create a pool, run the pool_tool command once from a single node.

Note
The pool can be activated on any node by running the pool_assemble command. Refer to
Section 5.6 Activating/Deactivating a Pool Volume.

5.5.1. Usage
pool_tool -c ConfigFile

ConfigFile

Specifies the file that defines the pool.

5.5.2. Example
In this example, the pool0.cfg file describes the new pool, pool0, created by the command.

pool_tool -c pool0.cfg

5.5.3. Comments
Multiple pools can be created with one pool_tool command by listing multiple pool configuration
files on the command line.
If no flag is specified in the pool_tool command, the function defaults to creating a pool (-c), with
the configuration file specified after the command.

5.6. Activating/Deactivating a Pool Volume
The pool_assemble command activates or deactivates pools on a node.

Note
The pool_assemble command must be run on every node that accesses shared pools; also, it must
be run each time a node reboots. You can use the pool init.d script included with GFS to auto-
matically run the pool_assemble command each time a node reboots. For more information about
GFS init.d scripts, refer to Chapter 12 Using GFS init.d Scripts.

Chapter 5. Using the Pool Volume Manager 29

The pool_assemble command only activates pools from devices visible to the node (those listed in
/proc/partitions/). Disk labels created by the pool_tool command are scanned to determine
which pools exist and, as a result, should be activated. The pool_assemble command also creates
device nodes in the /dev/pool/ directory for devices it has activated.

5.6.1. Usage
Activating a Pool Volume

pool_assemble -a [PoolName]

PoolName

Specifies the pool to activate. More than one name can be listed. If no pool names are specified,
all pools visible to the system are activated.

Deactivating a Pool Volume

pool_assemble -r [PoolName]

PoolName

Specifies the pool to deactivate. More than one name can be listed. If no pool names are specified,
all pools visible to the system are deactivated.

5.6.2. Examples
This example activates all pools on a node:

pool_assemble -a

This example deactivates all pools on a node:

pool_assemble -r

This example activates pool0 on a node:

pool_assemble -a pool0

This example deactivates pool0 on a node:

pool_assemble -r pool0

5.6.3. Comments
The pool_assemble command must be run on every GFS node.
The pool_assemble command should be put into the node’s system-startup scripts so that pools are
activated each time the node boots.

30 Chapter 5. Using the Pool Volume Manager

Note
You can use GFS init.d scripts included with GFS to automate activating and deactivating pools.
For more information about GFS init.d scripts, refer to Chapter 12 Using GFS init.d Scripts.

5.7. Displaying Pool Configuration Information
Using the pool_tool command with the -p (print) option displays pool configuration information in
configuration file format. The pool information is displayed in the format equivalent to the configura-
tion file that was used to create the pool. The disk labels that were written when the pool was created
are read to recreate the configuration file.

5.7.1. Usage
pool_tool -p [PoolName]

PoolName

Specifies the pool name(s) for which to display information. If no pool names are specified, all
active pools are displayed.

5.7.2. Example
In this example, the pool_tool -p command displays the configuration for pool0:

pool_tool -p pool0
poolname pool0
#minor <dynamically assigned>

subpools 1
subpool 0 0 1 gfs_data
pooldevice 0 0 /dev/sda1

5.8. Growing a Pool Volume
An existing pool can be expanded while it is activated or deactivated. You can grow a pool by creating
a new pool configuration file (based on an existing pool configuration file), then adding one or more
subpools containing the new devices to be added to the volume.
Refer to Section 5.7 Displaying Pool Configuration Information for information on creating a config-
uration file for an existing pool volume.

5.8.1. Usage
pool_tool -g [ConfigFile]

Chapter 5. Using the Pool Volume Manager 31

ConfigFile

Specifies the file describing the extended pool.

Note
The pool_tool -g command supersedes the pool_grow command as of GFS 5.2. Although the
pool_grow command is still available, it is not supported in GFS 5.2 and later.

5.8.2. Example procedure
The following example procedure expands a pool volume.

1. Create a new configuration file from configuration information for the pool volume that you
want to expand (in this example, pool0):
pool_tool -p pool0 > pool0-new.cfg
cat pool0-new.cfg
poolname pool0
subpools 1
subpool 0 128 4 gfs_data
pooldevice 0 0 /dev/sdb1
pooldevice 0 1 /dev/sdc1
pooldevice 0 2 /dev/sdd1
pooldevice 0 3 /dev/sde1

2. Edit the new file, pool0-new.cfg, by adding one or more subpools that contain the devices or
partitions, as indicated in this example:
poolname pool0
subpools 2 <--- Change
subpool 0 128 4 gfs_data
subpool 1 0 1 gfs_data <--- Add
pooldevice 0 0 /dev/sdb1
pooldevice 0 1 /dev/sdc1
pooldevice 0 2 /dev/sdd1
pooldevice 0 3 /dev/sde1
pooldevice 1 0 /dev/sdf1 <--- Add

3. After saving the file, verify that the file has been changed:
cat pool0-new.cfg
poolname pool0
subpools 2 <--- Changed
subpool 0 128 4 gfs_data
subpool 1 0 1 gfs_data <--- Added
pooldevice 0 0 /dev/sdb1
pooldevice 0 1 /dev/sdc1
pooldevice 0 2 /dev/sdd1
pooldevice 0 3 /dev/sde1
pooldevice 1 0 /dev/sdf1 <--- Added

4. Run the pool_tool command with the grow (-g) option specifying the configuration file:
pool_tool -g pool0-new.cfg

32 Chapter 5. Using the Pool Volume Manager

5.9. Erasing a Pool Volume
A deactivated pool can be erased by using the -e option of the pool_tool command. Using
pool_tool -e erases the disk labels written when the pool was created.

5.9.1. Usage
pool_tool -e [PoolName]

PoolName

Specifies the pool to erase. If no pool names are specified, all pools are erased.

5.9.2. Example
This example erases all disk labels for pool0:

pool_tool -e pool0

5.9.3. Comments
The -O (override) flag bypasses the confirmation step.

5.10. Renaming a Pool Volume
The pool_tool command can be used to change the name of a pool.

5.10.1. Usage
pool_tool -r NewPoolName CurrentPoolName

NewPoolName

Specifies the new name of the pool.

CurrentPoolName

Specifies the pool name to be changed.

Note
In releases before GFS 5.2, the -r flag had a different usage.

Chapter 5. Using the Pool Volume Manager 33

Note
You must deactivate a pool before renaming it. You can deactivate a pool with the pool_assemble -r
PoolName command or by using the pool init.d script. For more information about GFS init.d
scripts, refer to Chapter 12 Using GFS init.d Scripts.

5.10.2. Example
This example changes the name for pool mypool to pool0:

pool_tool -r pool0 mypool

5.11. Changing a Pool Volume Minor Number
The pool_tool command can be used to change the minor number of a pool.

5.11.1. Usage
pool_tool -m Number PoolName

Number

Specifies the new minor number to be used.

PoolName

Specifies the name of the pool to be changed. The minor number must have a value between 0
and 64. Specifying a minor number of 0 dynamically selects an actual minor number between 65
and 127 at activation time.

Note
You must deactivate a pool before changing its pool volume minor number. You can deactivate a
pool with the pool_assemble -r PoolName command or by using the pool init.d script. For more
information about GFS init.d scripts, refer to Chapter 12 Using GFS init.d Scripts.

5.11.2. Example
This example changes the minor number for pool0 to 6.

pool_tool -m 6 pool0

34 Chapter 5. Using the Pool Volume Manager

5.11.3. Comments
Before changing a pool volume minor number, deactivate the pool. For this command to take
effect throughout the cluster, you must reload the pools on each node in the cluster by issuing
a pool_assemble -r PoolName command followed by a pool_assemble -a PoolName
command.

Note
You can use GFS init.d scripts included with GFS to automate activating and deactivating pools.
For more information about GFS init.d scripts, refer to Chapter 12 Using GFS init.d Scripts.

5.12. Displaying Pool Volume Information
The pool_info command can be used to display information about pools.
Using the pool_info command with the -i option displays the following basic information about
the named pool(s): the pool name, the minor number, the device node alias, the capacity, whether or
not the pool is being used, and the multipathing type.
Using the pool_info command with the -v (verbose) option displays complete information about
the named pools, which adds subpool and device details to the output display.

5.12.1. Usage
Basic Display

pool_info -i [PoolName]

PoolName

Specifies the pool name(s) for which to display information. If no pool names are specified, all
active pools are displayed.

Complete Display

pool_info -v [PoolName]

PoolName

Specifies the pool name(s) for which to display information. If no pool names are specified, all
active pools are displayed.

5.12.2. Examples
This example displays basic information about all activated pools:

pool_info -i

This example displays complete information about all activated pools:

Chapter 5. Using the Pool Volume Manager 35

pool_info -v

This example displays complete information about pool0:

pool_info -v pool0

5.13. Using Pool Volume Statistics
The pool_info command can be used to display pool read-write information and to clear statistics
from pools.
Using the pool_info command with the -s option displays the number of reads and writes for the
named pool(s) since the last time the pool was activated or statistics were cleared.
Using the pool_info command with the -c option clears statistics from the named pools.

5.13.1. Usage
Display the Number of Reads and Writes

pool_info -s [PoolName]

PoolName

Specifies the pool name for which to display information. If no pool names are specified, all
active pools are displayed.

Clear Statistics

pool_info -c [PoolName]

PoolName

Specifies the pool name(s) from which statistics are cleared. If no pool names are specified,
statistics are cleared from all active pools.

5.13.2. Examples
This example displays statistics for all activated pools:

pool_info -s

This example displays statistics for pool0:

pool_info -s pool0

This example clears statistics for pool0:

pool_info -c pool0

36 Chapter 5. Using the Pool Volume Manager

5.14. Adjusting Pool Volume Multipathing
The pool_mp command adjusts multipathing for running pools. Using the pool_mp command with
the -m option, you can change the type of multipathing. Using the pool_mp command with the -r
option, you can reintegrate failed paths.

5.14.1. Usage
Change the Type of Multipathing

pool_mp -m {none | failover | n} [PoolName]

{none | failover | n}
Specifies the type of multipathing to be used: either none, failover, or the number of kilo-
bytes, n, used as a round-robin stripe value.

PoolName

Specifies the pool on which to adjust multipathing. If no pool names are specified, this action is
attempted on all active pools.

Reintegrate Failed Paths

pool_mp -r [PoolName]

PoolName

Specifies the pool on which to attempt restoration of any failed paths. If no pool names are
specified, this action is attempted on all active pools.

5.14.2. Examples
This example adjusts the multipathing for all pools to none.

pool_mp -m none

This example adjusts the multipathing for pool0 to failover.

pool_mp -m failover pool0

This example adjusts the multipathing for pool0 to round-robin with a stripe size of 512 KB.

pool_mp -m 512 pool0

This example restores failed paths for all active pools.

pool_mp -r

Chapter 6.
Creating the Cluster Configuration System Files
The GFS Cluster Configuration System (CCS) requires the following files:

• cluster.ccs— The cluster file contains the name of the cluster and the names of the nodes where
LOCK_GULM servers are run.

• fence.ccs — The fence file describes each device used for fencing.
• nodes.ccs— The nodes file contains an entry for each GFS node and LOCK_GULM server node.

This file specifies the IP address and fencing parameters of each node.
This chapter describes how to create the CCS files and contains the following sections:

• Section 6.1 Prerequisite Tasks
• Section 6.2 CCS File Creation Tasks
• Section 6.3 Dual Power and Multipath FC Fencing Considerations
• Section 6.4 GNBD Multipath Considerations for CCS Files
• Section 6.5 Creating the cluster.ccs File
• Section 6.6 Creating the fence.ccs File
• Section 6.7 Creating the nodes.ccs File

Note
If you are using GFS with Red Hat Cluster, you can create CCS files with GFS Druid.
For information about configuring and using GFS with Red Hat Cluster Suite, refer to
Appendix A Using Red Hat GFS with Red Hat Cluster Suite.

6.1. Prerequisite Tasks
Before creating the CCS files, make sure that you perform the following prerequisite tasks:

• Choose a cluster name (user variable, ClusterName).
• Create a temporary directory (for example, /root/alpha/) in which to place the new CCS files

that are created. Note the temporary directory path; it is used later as a Directory parameter
when the CCS files are written to a CCA (Cluster Configuration Archive) device. For more infor-
mation, refer to Section 7.1 Creating a CCS Archive.

• Identify each node that runs the LOCK_GULM server daemons. Those nodes must have entries in
the nodes.ccs file. Refer to Section 8.2 LOCK_GULM.

• Determine if any GFS node has dual power supplies or multiple paths to FC storage.
• Determine if you are using GNBD multipath.
• Determine the type of fencing for each node.
For more information about prerequisite tasks, refer to Section 1.5 Before Configuring GFS

38 Chapter 6. Creating the Cluster Configuration System Files

6.2. CCS File Creation Tasks
To create the CCS files perform the following steps:

1. Create the cluster.ccs file.
2. Create the fence.ccs file.
3. Create the nodes.ccs file.

Note
The contents of CCS files are case sensitive.

6.3. Dual Power and Multipath FC Fencing Considerations
To ensure that fencing completely removes a node that has dual power supplies or multiple paths to
FC storage, both power supplies and all paths to FC storage for that node must be fenced.
To fence dual power supplies and multiple paths to FC storage, you need to consider the following
actions when creating the fence.ccs and nodes.ccs files:

• fence.ccs — For each power supply and each path to FC storage define a fencing device
(fence.ccs:fence_devices/DeviceName).

• nodes.ccs — For each node with dual power supplies, include in the fencing method section
(nodes.ccs:nodes/NodeName/fence/Methodname) a fencing device for each power supply .
For each node having multiple paths to FC storage, include in the fencing method section a fencing
device for each path to FC storage.

GFS supports dual power-supply fencing with the APC MasterSwitch only; it supports
multipath FC fencing with Brocade and Vixel switches. For more information about creating
the fence.ccs and nodes.ccs files, refer to Section 6.6 Creating the fence.ccs File and
Section 6.7 Creating the nodes.ccs File. For more information about fencing, refer to
Chapter 10 Using the Fencing System.

6.4. GNBD Multipath Considerations for CCS Files
GNBD multipath allows you to configure multiple GNBD server nodes (nodes that export GNBDs to
GFS nodes) with redundant paths between the GNBD server nodes and storage devices. The GNBD
server nodes, in turn, present multiple storage paths to GFS nodes (GNBD clients) via redundant
GNBDs. With GNBD multipath, if a GNBD server node becomes unavailable, another GNBD server
node can provide GFS nodes with access to storage devices.
Make sure to take the following actions when setting up CCS files for GNBD multipath:

• Configure a fencing method that physically removes each GNBD server node from the network.

Chapter 6. Creating the Cluster Configuration System Files 39

Warning
Do not specify the GNBD fencing agent (fence_gnbd) as a fencing device for the GNBD server
nodes.

• If you specify fence_gnbd as a fence device for a GFS node using GNBD multipath,
the fence.ccs file must include an option = multipath parameter (in
fence.ccs:fence_devices/DeviceName).

Note
If the GFS node is using another fencing device, the option = multipath parameter is not
needed.

For more information about setting up CCS files for GNBD multipath, refer to
Section 6.6 Creating the fence.ccs File and Section 6.7 Creating the nodes.ccs File.
For more information and additional considerations about using GNBD multipath,
refer to Chapter 11 Using GNBD. For more information about fencing, refer to
Chapter 10 Using the Fencing System.

6.5. Creating the cluster.ccs File
Creating the cluster.ccs file consists of specifying the following parameters:

• Cluster name
• Each node that runs LOCK_GULM server
• Optional parameters

Note
Because of quorum requirements, the number of lock servers allowed in a GFS cluster can be 1, 3,
4, or 5. Any other number of lock servers — that is, 0, 2, or more than 5 — is not supported.

Note
Two optional cluster.ccs parameters, heartbeat_rate and allowed_misses, are included in this
procedure for configuring node failure detection. For a description of other optional parameters, refer
to the lock_gulmd(5) man page.

To create the cluster.ccs file, follow these steps:

1. Create a new file named cluster.ccs using the file structure shown in Figure 6-1. Refer to
Table 6-1 for syntax description.

2. Specify ClusterName (for example, alpha). Refer to Example 6-1.
3. Specify each node (NodeName) that runs LOCK_GULM server (for example, n01, n02, and
n03). Refer to Example 6-1.

40 Chapter 6. Creating the Cluster Configuration System Files

4. (Optional) For the heartbeat rate (heartbeat_rate =), specify Seconds. Refer to
Example 6-1.
The Seconds parameter in combination with the allowed_misses Number parameter spec-
ify the amount of time for node failure detection as follows:
Seconds x (Number+1) = Time (in seconds)

5. (Optional) For the allowed consecutively missed heartbeats (allowed_misses =), specify
Number. Refer to Example 6-1.

6. Save the cluster.ccs file.

cluster {
name = "ClusterName"
lock_gulm {

servers = ["NodeName",..., "NodeName"]
heartbeat_rate = Seconds <-- Optional
allowed_misses = Number <-- Optional

}
}

Figure 6-1. File Structure: cluster.ccs

Parameter Description
ClusterName The name of the cluster, from 1 to 16 characters long.
NodeName The name of each node that runs the LOCK_GULM server. Each

node name must appear under nodes.ccs:nodes.

Seconds (Optional) For the heartbeat_rate = parameter, the rate, in seconds, that a
master node checks for heartbeats from other nodes. The default
value of Seconds is 15. To ensure that nodes respond within the
Seconds value, the interval for heartbeats sent by all nodes is
automatically set to two-thirds of the Seconds parameter value.
The Seconds parameter in combination with the Number
parameter specify the amount of time for node failure detection as
follows: Seconds x (Number+1) = Time (in seconds).
To specify Seconds as a sub-second value, use floating point
notation; however, refer to the following caution for sub-second
values and other values less than the default value.

Caution: If you must adjust Seconds to a different value than the
default value, make sure that you understand in detail the
characteristics of your cluster hardware and software. Smaller
Seconds values can cause false node expirations under heavy
network loads.

Number (Optional) For allowed_misses, how many consecutive heartbeats can be
missed before a node is marked as expired. The default value of
Number is 2. The Seconds parameter in combination with the
Number parameter specify the amount of time for node failure
detection as follows: Seconds x (Number+1) = Time (in seconds).

Table 6-1. File Syntax Description: Variables for cluster.ccs

Chapter 6. Creating the Cluster Configuration System Files 41

cluster {
name = "alpha"
lock_gulm {

servers = ["n01", "n02", "n03"]
heartbeat_rate = 20
allowed_misses = 3

}
}

Example 6-1. cluster.ccs

6.6. Creating the fence.ccs File
You can configure each node in a GFS cluster for a variety of fencing devices. To configure fencing
for a node, you need to perform the following tasks:

• Create the fence.ccs file — Define the fencing devices available in the cluster (described in this
section).

• Create the nodes.ccs file — Define which fencing method (or methods) each node should use
(refer to Section 6.7 Creating the nodes.ccs File).

Creating the fence.ccs file consists of defining each fencing device you are going to use. You can
define the following types of fencing devices in the fence.ccs file:

• APC MasterSwitch
• WTI NPS (Network Power Switch)
• Brocade FC (Fibre Channel) switch
• McData FC switch
• Vixel FC switch
• GNBD
• HP RILOE card
• xCAT
• Egenera BladeFrame system
• Manual

Warning
Manual fencing should not be used in a production environment. Manual fencing depends on
human intervention whenever a node needs recovery. Cluster operation is halted during the inter-
vention.

The fence.ccs file is used in conjunction with the nodes.ccs file to configure fencing in a cluster.
The nodes.ccs file specifies fencing devices that are defined in the fence.ccs file. The fence.ccs
file can define any combination of fencing devices.
If a node has dual power supplies, you must define a fencing device for each power supply. Similarly,
if a node has multiple paths to FC storage, you must define a fencing device for each path to FC
storage.
For more information about fencing, refer to Chapter 10 Using the Fencing System.

42 Chapter 6. Creating the Cluster Configuration System Files

To create the fence.ccs file, follow these steps:

1. Create a file named fence.ccs. Use a file format according to the fencing method as follows.
Refer to Table 6-2 for syntax description.
• APC MasterSwitch — Refer to Figure 6-2.
• WTI NPS (Network Power Switch) — Refer to Figure 6-3.
• Brocade FC (Fibre Channel) switch — Refer to Figure 6-4.
• McData FC (Fibre Channel) switch — Refer to Figure 6-5.
• Vixel FC switch — Refer to Figure 6-6.
• GNBD — For GNBD without GNBD multipath, refer to Figure 6-7. For GNBD with GNBD

multipath, refer to Figure 6-8.
• HP RILOE card — Refer to Figure 6-9.
• xCAT — Refer to Figure 6-10.
• Egenera BladeFrame system — Refer to Figure 6-11.
• Manual — Refer to Figure 6-12.

Warning
Manual fencing should not be used in a production environment. Manual fencing depends
on human intervention whenever a node needs recovery. Cluster operation is halted during
the intervention.

2. Type parameters in the file according to the fencing device (or devices) needed:
a. For each APC MasterSwitch fencing device, specify the following parameters:
DeviceName, the fencing agent (agent =) as fence_apc, IPAddress,
LoginName, and LoginPassword. Refer to Example 6-2 for a fence.ccs file that
specifies an APC MasterSwitch fencing device.

b. For each WTI NPS fencing device, specify the following parameters: DeviceName, the
fencing agent (agent =) as fence_wti, IPAddress, and LoginPassword. Refer
to Example 6-3 for a fence.ccs file that specifies a WTI NPS fencing device.

c. For each Brocade FC-switch fencing device, specify the following parameters:
DeviceName, the fencing agent (agent =) as fence_brocade, IPAddress,
LoginName, and LoginPassword. Refer to Example 6-4 for a fence.ccs file that
specifies a Brocade FC-switch fencing device.

d. For each McData FC-switch fencing device, specify the following parameters:
DeviceName, the fencing agent (agent =) as fence_mcdata, IPAddress,
LoginName, and LoginPassword. Refer to Example 6-5 for a fence.ccs file that
specifies a McData FC-switch fencing device.

e. For each Vixel FC-switch fencing device, specify the following parameters:
DeviceName, the fencing agent (agent =) as fence_vixel, IPAddress, and
LoginPassword. Refer to Example 6-6 for a fence.ccs file that specifies a Vixel
FC-switch fencing device.

f. For each GNBD fencing device, specify the following parameters: DeviceName, the
fencing agent (agent =) as fence_gnbd, and ServerName.
For GNBD multipath, include an option = "multipath" line after the ServerName
line. In addition, for GNBD multipath, you can add two optional lines: retrys =
"Number" and wait_time = "Seconds".

Chapter 6. Creating the Cluster Configuration System Files 43

Note
Do not use fence_gnbd to fence GNBD server nodes.

For descriptions of those parameters refer to Table 6-2. Refer to Example 6-7 for a
fence.ccs file that specifies a GNBD fencing device for a configuration that does not
employ GNBD multipath. Refer to Example 6-8 for a fence.ccs file that specifies a
GNBD fencing device for a configuration that does employ GNBD multipath.

g. For each HP-RILOE-card fencing device, specify the following parameters:
DeviceName, the fencing agent (agent =) as fence_rib, HostName, LoginName,
and LoginPassword. Refer to Example 6-9 for a fence.ccs file that specifies an
HP-RILOE-card fencing device.

h. For each xCAT fencing device, specify the following parameters: DeviceName, the
fencing agent (agent =) as fence_xcat, and RpowerBinaryPath. Refer to
Example 6-10 for a fence.ccs file that specifies an xCAT fencing device.

i. For each Egenera BladeFrame fencing device, specify the following parameters:
DeviceName, the fencing agent (agent =) as fence_egenera, and CserverName.
Refer to Example 6-11 for a fence.ccs file that specifies an Egenera BladeFrame
fencing device.

j. For each manual fencing device, specify DeviceName and the fencing agent (agent =)
as fence_manual. Refer to Example 6-12 for a fence.ccs file that specifies a manual
fencing device.

Warning
Manual fencing should not be used in a production environment. Manual fencing de-
pends on human intervention whenever a node needs recovery. Cluster operation is
halted during the intervention.

3. Save the file.

fence_devices{
DeviceName {

agent = "fence_apc"
ipaddr = "IPAddress"
login = "LoginName"
passwd = "LoginPassword"

}
DeviceName {
.
.
.
}

}

Figure 6-2. File Structure: fence_devices, fence_apc

44 Chapter 6. Creating the Cluster Configuration System Files

fence_devices{
DeviceName {

agent = "fence_wti"
ipaddr = " IPAddress"
passwd = " LoginPassword"

}
DeviceName {
.
.
.
}

}

Figure 6-3. File Structure: fence_devices, fence_wti

fence_devices{
DeviceName {

agent = "fence_brocade"
ipaddr = "IPAddress"
login = "LoginName"
passwd = "LoginPassword"

}
DeviceName {
.
.
.
}

}

Figure 6-4. File Structure: fence_devices, fence_brocade

fence_devices{
DeviceName {

agent = "fence_mcdata"
ipaddr = "IPAddress"
login = "LoginName"
passwd = "LoginPassword"

}
DeviceName {
.
.
.
}

}

Figure 6-5. File Structure: fence_devices, fence_mcdata

Chapter 6. Creating the Cluster Configuration System Files 45

fence_devices{
DeviceName {

agent = "fence_vixel"
ipaddr = "IPAddress"
passwd = "LoginPassword"

}
DeviceName {
.
.
.
}

}

Figure 6-6. File Structure: fence_devices, fence_vixel

fence_devices{
DeviceName {

agent = "fence_gnbd"
server = "ServerName"
.
.
.
server = "ServerName"

}
DeviceName {
.
.
.
}

}

Figure 6-7. File Structure: fence_devices, fence_gnbd without GNBD Multipath

fence_devices{
DeviceName {

agent = "fence_gnbd"
server = "ServerName"
.
.
.
server = "ServerName"
option = "multipath"
retrys = "Number"
wait_time = "Seconds"

}
DeviceName {
.
.
.
}

}

Figure 6-8. File Structure: fence_devices, fence_gnbd with GNBD Multipath

46 Chapter 6. Creating the Cluster Configuration System Files

fence_devices{
DeviceName {

agent = "fence_rib"
hostname = "HostName"
login = "LoginName"
passwd = "LoginPassword"

}
DeviceName {
.
.
.
}

}

Figure 6-9. File Structure: fence_devices, fence_rib

fence_devices{
DeviceName {

agent = "fence_xcat"
rpower = "RpowerBinaryPath"

}
DeviceName {
.
.
.
}

}

Figure 6-10. File Structure: fence_devices, fence_xcat

fence_devices{
DeviceName {

agent = "fence_egenera"
cserver = "CserverName"

}
DeviceName {
.
.
.
}

}

Figure 6-11. File Structure: fence_devices, fence_egenera

fence_devices{
DeviceName {

agent = "fence_manual"
}
DeviceName {
.
.
.
}

}

Figure 6-12. File Structure: fence_devices, fence_manual

Chapter 6. Creating the Cluster Configuration System Files 47

Warning
Manual fencing should not be used in a production environment. Manual fencing depends on human
intervention whenever a node needs recovery. Cluster operation is halted during the intervention.

Parameter Description
CserverName For Egenera BladeFrame fencing device: The name of an Egenera

control blade, the Egenera control blade with which the fence agent
communicates via ssh.

DeviceName The name of a fencing device. The DeviceName parameter specifies
the name of a fencing device and makes that fencing device available
for use by the fence section of a nodes.ccs file
(nodes.ccs:NodeName/fence/MethodName). The fence section
of a nodes.ccs file also contains DeviceName parameters each
mapping to a DeviceName in the fence.ccs file.

HostName The host name of a RILOE card on the network to which stunnel
connections can be made.

IPAddress For fencing with power and Fibre Channel switches: The IP address
of a switch to which Telnet connections can be established.

LoginName The login name for a power switch, an FC switch, or a RILOE card.
LoginPassword The password for logging in to a power switch, an FC switch, or a

RILOE card.

multipath Selects GNBD multipath style fencing.
CAUTION: When multipath style fencing is used, if the gnbd_servd
process of a GNBD server node cannot be contacted, it is fenced as
well, using its specified fencing method. That means that when a
GNBD client (GFS node) is fenced, any node listed as its GNBD
server that does not have the gnbd_serv module loaded (which starts
gnbd_servd) is also fenced.

RpowerBinaryPath For xCAT fencing device, the path to the rpower binary.
Number The number of times to retry connecting to the GNBD server after a

failed attempt, before the server is fenced. The parameter entry is for
the retrys = entry and is only valid when used with multipath style
fencing. (Refer to the multipath entry in this table.) The default value
of Number is 3.

Seconds The length of time, in seconds, to wait between retries. This parameter
entry is for the wait_time = entry and is only valid when used with
multipath style fencing. (Refer to the multipath entry in this table.)
The default value of Seconds is 2.

ServerName The host name of a GNBD server. Each GNBD server is represented
with a "server =" line in the fence.ccs file. For example, if you
have three GNBD servers, then the fence.ccs file needs three
"server =" lines one for each GNBD server.

Table 6-2. File Syntax Description: Variables for fence.ccs

48 Chapter 6. Creating the Cluster Configuration System Files

fence_devices {
apc1 {

agent = "fence_apc"
ipaddr = "10.0.3.3"
login = "apc"
passwd = "apc"

}
apc2 {

agent = "fence_apc"
ipaddr = "10.0.3.4"
login = "apc"
passwd = "apc"

}
}

Example 6-2. APC MasterSwitch Fencing Devices Named apc1 and apc2

fence_devices {
wti1 {

agent = "fence_wti"
ipaddr = "10.0.3.3"
passwd = "password"

}
wti2 {

agent = "fence_wti"
ipaddr = "10.0.3.4"
passwd = "password"

}
}

Example 6-3. WTI NPS Fencing Devices Named wti1 and wti2

fence_devices {
silkworm1 {

agent = "fence_brocade"
ipaddr = "10.0.3.3"
login = "admin"
passwd = "password"

}
silkworm2 {

agent = "fence_brocade"
ipaddr = "10.0.3.4"
login = "admin"
passwd = "password"

}
}

Example 6-4. Brocade FC-Switch Fencing Devices Named silkworm1 and silkworm2

Chapter 6. Creating the Cluster Configuration System Files 49

fence_devices {
mdfc1 {

agent = "fence_mcdata"
ipaddr = "10.0.3.3"
login = "admin"
passwd = "password"

}
mdfc2 {

agent = "fence_mcdata"
ipaddr = "10.0.3.4"
login = "admin"
passwd = "password"

}
}

Example 6-5. McData FC-Switch Fencing Devices Named mdfc1 and mdfc2

fence_devices {
vixel1 {

agent = "fence_vixel"
ipaddr = "10.0.3.3"
passwd = "password"

}
vixel2 {

agent = "fence_vixel"
ipaddr = "10.0.3.4"
passwd = "password"

}
}

Example 6-6. Vixel FC-Switch Fencing Device Named vixel1 and vixel2

fence_devices {
gnbd {

agent = "fence_gnbd"
server = "nodea"
server = "nodeb"

}
}

This example shows a fencing device named gnbd with two servers: nodea and nodeb.

Example 6-7. GNBD Fencing Device Named gnbd, without GNBD Multipath

50 Chapter 6. Creating the Cluster Configuration System Files

fence_devices {
gnbdmp {

agent = "fence_gnbd"
server = "nodea"
server = "nodeb"
option = "multipath" <-- Additional entry
retrys = "5" <-- Number of retries set to 5
wait_time = "3" <-- Wait time between retries set to 3

}
}

This example shows a fencing device named gnbdmp with two servers: nodea and nodeb. Because
GNBD Multipath is employed, an additional configuration entry under gnbdmp is needed: option =
"multipath". Also, for GNBD multipath, the example sets the number of retries to 5 with retrys
= 5, and sets the wait time between retries to 3 with wait_time = 3.

Example 6-8. GNBD Fencing Device Named gnbdmp, with GNBD Multipath

fence_devices {
riloe1 {

agent = "fence_rib"
ipaddr = "10.0.4.1"
login = "admin"
passwd = "password"

}
riloe2 {

agent = "fence_rib"
ipaddr = "10.0.4.2"
login = "admin"
passwd = "password"

}
}

In this example, two RILOE fencing devices are defined for two nodes.

Example 6-9. Two HP-RILOE-Card Fencing Device Named riloe1 and riloe2

fence_devices {
xcat {

agent = "fence_xcat"
rpower = "/opt/xcat/bin/rpower"

}
}

Example 6-10. xCAT Fencing Device Named xcat

fence_devices {
egenera {

agent = "fence_egenera"
cserver = "c-blade1"

}
}

Example 6-11. Egenera BladeFrame Fencing Devices Named and xcat2

Chapter 6. Creating the Cluster Configuration System Files 51

fence_devices {
admin {

agent = "fence_manual"
}

}

Example 6-12. Manual Fencing Device Named admin

Warning
Manual fencing should not be used in a production environment. Manual fencing depends on human
intervention whenever a node needs recovery. Cluster operation is halted during the intervention.

6.7. Creating the nodes.ccs File
The nodes.ccs file specifies the nodes that run in a GFS cluster and their fencing methods. The nodes
specified include those that run GFS and those that run LOCK_GULM servers. The nodes.ccs file
is used in conjunction with the fence.ccs file to configure fencing in a cluster; the nodes.ccs file
specifies fencing devices that are defined in the fence.ccs file.
Creating the nodes.ccs file consists of specifying the identity and fencing method (or methods) of
each node in a GFS cluster. Specifying the identity consists of assigning a name and an IP address
to the node. Specifying a fencing method consists of assigning a name to the fencing method and
specifying its fencing-device parameters; that is, specifying how a node is fenced.
The way in which a fencing method is specified depends on if a node has either dual power supplies or
multiple paths to FC storage. If a node has dual power supplies, then the fencing method for the node
must specify at least two fencing devices — one fencing device for each power supply. Similarly, if a
node has multiple paths to FC storage, then the fencing method for the node must specify one fencing
device for each path to FC storage. For example, if a node has two paths to FC storage, the fencing
method should specify two fencing devices — one for each path to FC storage. If a node has neither
dual power supplies nor multiple paths to FC storage, then the fencing method for the node should
specify only one fencing device.
You can configure a node with one fencing method or multiple fencing methods. When you configure
a node for one fencing method, that is the only fencing method available for fencing that node. When
you configure a node for multiple fencing methods, the fencing methods are cascaded from one fenc-
ing method to another according to the order of the fencing methods specified in the nodes.ccs file.
If a node fails, it is fenced using the first fencing method specified in the nodes.ccs file for that node.
If the first fencing method is not successful, the next fencing method specified for that node is used.
If none of the fencing methods is successful, then fencing starts again with the first fencing method
specified, and continues looping through the fencing methods in the order specified in nodes.ccs
until the node has been fenced.
Refer to Chapter 10 Using the Fencing System for basic fencing details, descriptions of how fencing
is used, and descriptions of available fencing methods.

52 Chapter 6. Creating the Cluster Configuration System Files

To create the nodes.ccs file, follow these steps:

1. Create a file named nodes.ccs.
a. If you are configuring a node for one fencing method (not cascaded), specify only one

fencing method per node in the nodes.ccs file. Use a file format according to the fencing
method as follows. Refer to Table 6-3 for syntax description.
• APC MasterSwitch — For a node with a single power supply, refer to Figure 6-13. For

a node with dual power supplies, refer to Figure 6-14.
• WTI NPS — Refer to Figure 6-15.
• Brocade, McData, or Vixel FC switch — Refer to Figure 6-16.
• GNBD — Refer to Figure 6-17.
• HP RILOE — Refer to Figure 6-18.
• xCAT — Refer to Figure 6-19.
• Egenera BladeFrame — Refer to Figure 6-20.
• Manual — Refer to Figure 6-21.

Warning
Manual fencing should not be used in a production environment. Manual fencing de-
pends on human intervention whenever a node needs recovery. Cluster operation is
halted during the intervention.

b. If you are configuring a node for cascaded fencing, use the file format in Figure 6-22.
Refer to Table 6-3 for syntax description.

Note
Figure 6-22 does not show device-specific parameters for fencing methods. To determine
device-specific parameters, refer to the appropriate figures listed in Step 1, part a.

2. For each node, specify NodeName, IFName, and the IP address of the node name,
IPAddress.
If your cluster is running Red Hat GFS 6.0 for Red Hat Enterprise Linux 3 Update 5 and later,
you can use the optional usedev parameter to explicitly specify an IP address rather than relying
on an IP address from libresolv. For more information about the optional usedev parameter,
refer to the file format in Figure 6-23 and the example in Example 6-26. Refer to Table 6-3 for
syntax description of the usedev parameter.

Note
Figure 6-23 and Example 6-26 do not show device-specific parameters for fencing methods.
To determine device-specific parameters, refer to the appropriate figures listed in Step 1, part
a.

Chapter 6. Creating the Cluster Configuration System Files 53

Note
Make sure that you specify Nodename as the Linux hostname and that the primary IP address
of the node is associated with the hostname. Specifying NodeName other than the Linux host-
name (for example the interface name) can cause unpredictable results — especially if the
node is connected to multiple networks. To determine the hostname of a node, use the uname
-n command on the node. To verify the IP address associated with the hostname, issue a ping
command to the hostname.

3. For each node, specify the fencing parameters according to the fencing method you are using,
as follows:

a. If using APC MasterSwitch fencing, specify MethodName, DeviceName,
PortNumber, and SwitchNumber. If you are configuring for dual power supplies,
specify the following parameters for the second fencing device: DeviceName,
PortNumber, and SwitchNumber. Refer to Example 6-13 for a nodes.ccs file that
specifies APC MasterSwitch fencing for a single power supply. Refer to Example 6-14
for a nodes.ccs file that specifies APC MasterSwitch fencing for dual power supplies.

b. If using WTI NPS fencing, specify MethodName, DeviceName, and PortNumber.
Refer to Example 6-15 for a nodes.ccs file that specifies WTI NPS fencing.

c. If using Brocade, McData, or Vixel FC-switch fencing, specify MethodName,
DeviceName, and PortNumber. If you are configuring for multiple paths to FC
storage, specify the following parameters for each additional fencing device required:
DeviceName and PortNumber. Refer to Example 6-16 for a nodes.ccs file that
specifies Brocade FC-switch fencing. Refer to Example 6-17 for a nodes.ccs file that
specifies McData FC-switch fencing. Refer to Example 6-18 for a nodes.ccs file that
specifies Vixel FC-switch fencing.

d. If using GNBD fencing, specify MethodName, DeviceName, and IPAddress. Refer
to Example 6-19 for a nodes.ccs file that specifies GNBD fencing.

e. If using HP RILOE fencing, specify MethodName, DeviceName, and PortNumber.
Refer to Example 6-20 for a nodes.ccs file that specifies HP RILOE fencing.

f. If using xCAT fencing, specify MethodName, DeviceName, and NodelistName.
Refer to Example 6-21 for a nodes.ccs file that specifies xCAT fencing.

g. If using Egenera BladeFrame fencing, specify MethodName, DeviceName,
LPANName, and PserverName. Refer to Example 6-22 for a nodes.ccs file that
specifies Egenera BladeFrame fencing.

h. If using manual fencing, specify MethodName, DeviceName, and IPAddress. Refer
to Example 6-23 for a nodes.ccs file that specifies manual fencing.

Warning
Manual fencing should not be used in a production environment. Manual fencing de-
pends on human intervention whenever a node needs recovery. Cluster operation is
halted during the intervention.

i. If using cascaded fencing, specify parameters according to the type of fencing methods
and in the order that the fencing methods are to cascade. Refer to Example 6-24 for a
nodes.ccs file that specifies cascaded fencing.

j. If using GNBD multipath, fence the GNBD server nodes using any of the fencing methods
stated in previous steps in the procedure except for GNBD fencing (Step 3, part d). Refer
to Example 6-25 for a nodes.ccs file that specifies fencing for a GNBD server node.

54 Chapter 6. Creating the Cluster Configuration System Files

4. Save the nodes.ccs file.

nodes {

NodeName
{

.
.
.

}

NodeName
{

ip_interfaces
 {

IFNAME
= "
IPAddress
"

}

fence {

MethodName
{

DeviceName
 {

port =
PortNumber

switch
=
SwitchNumber

}

}

}

}

NodeName
{

.
.
.

}

}

File format for node

identification (same

format for all nodes)

File format for APC

MasterSwitch

fencing method, for

node with single

power supply only

Figure 6-13. File Format: nodes.ccs, APC Single Fencing Method, Single Power Supply

Chapter 6. Creating the Cluster Configuration System Files 55

nodes {

NodeName {
.
.
.

}

NodeName {

ip_interfaces {

IFNAME = "IPAddress"

}

fence {

MethodName {

DeviceName {

port = PortNumber

switch = SwitchNumber

option = "off"

}

DeviceName {

port = PortNumber

switch = SwitchNumber

option = "off"

}

DeviceName {

port = PortNumber

switch = SwitchNumber

option = "on"

}

DeviceName {

port = PortNumber

switch = SwitchNumber

option = "on"

}
}

}

}

NodeName {
.
.
.

}

}

File format for node

identification (same

format for all nodes)

File format for APC

MasterSwitch

fencing method, for

node with dual

power supplies

Fencing a node with

dual power supplies

requires that both

power supplies be

powered off before

rebooting the node.

To accomplish that,

the nodes.ccs file

requires the use of

the option =

parameter: first, set

to "off" for for the

fencing device of

each power supply,

then set to "on" for

the fencing device

of each power

supply.

Fencing device
for pwr supply 1

Fencing device
for pwr supply 1

Fencing device
for pwr supply 2

Fencing device
for pwr supply 2

Power down
pwr supply 1

Power down
pwr supply 2

Power up
pwr supply 1

Power up
pwr supply 2

Figure 6-14. File Format: nodes.ccs, APC Single Fencing Method, Dual Power Supply

56 Chapter 6. Creating the Cluster Configuration System Files

nodes {

NodeName
{

.
.
.

}

NodeName
{

ip_interfaces
 {

IFNAME
= "
IPAddress
"

}

fence {

MethodName
{

DeviceName
 {

port =
PortNumber

}

}

}

}

NodeName
{

.
.
.

}

}

File format for node

identification (same

format for all nodes)

File format for

WTI NPS fencing

method

Figure 6-15. File Format: nodes.ccs, WTI NPS, Single Fencing Method

Chapter 6. Creating the Cluster Configuration System Files 57

nodes {

NodeName
{

.
.
.

}

NodeName
{

ip_interfaces
 {

IFNAME
= "
IPAddress
"

}

fence {

MethodName
{

DeviceName
 {

port =
PortNumber

}

DeviceName
 {

port =
PortNumber

}

}

}

}

NodeName
{

.
.
.

}

}

File format for node

identification (same

format for all nodes)

File format for

Brocade, McData,

or Vixel FC-Switch

fencing method

Additional fencing

device: one required

for each additional

FC path

Figure 6-16. File Format: nodes.ccs, Brocade, McData, or Vixel FC Switch, Single Fencing
Method

58 Chapter 6. Creating the Cluster Configuration System Files

nodes {

NodeName
{

.
.
.

}

NodeName
{

ip_interfaces
 {

IFNAME
= "
IPAddress
"

}

fence {

MethodName
{

DeviceName
 {

ipaddr =
"
IPAddress
"

}

}

}

}

NodeName
{

.
.
.

}

}

File format for node

identification (same

format for all nodes)

File format for

GNBD fencing

method

Figure 6-17. File Format: nodes.ccs, GNBD, Single Fencing Method

Chapter 6. Creating the Cluster Configuration System Files 59

nodes {

NodeName
{

.
.
.

}

NodeName
{

ip_interfaces
 {

IFNAME
= "
IPAddress
"

}

fence {

MethodName
{

DeviceName
 {

localport =
PortNumber

}

}

}

}

NodeName
{

.
.
.

}

}

File format for node

identification (same

format for all nodes)

File format for

HP RILOE fencing

method

Figure 6-18. File Format: nodes.ccs, HP RILOE, Single Fencing Method

60 Chapter 6. Creating the Cluster Configuration System Files

nodes {

NodeName
{

.
.
.

}

NodeName
{

ip_interfaces
 {

IFNAME
= "
IPAddress
"

}

fence {

MethodName
{

DeviceName
 {

nodename =
“NodelistName”

}

}

}

}

NodeName
{

.
.
.

}

}

File format for node

identification (same

format for all nodes)

File format for

xCAT fencing

method

Figure 6-19. File Format: nodes.ccs, xCAT Fencing Method

Chapter 6. Creating the Cluster Configuration System Files 61

nodes {

NodeName
{

.
.
.

}

NodeName
{

ip_interfaces
 {

IFNAME
= "
IPAddress
"

}

fence {

MethodName
{

DeviceName
 {

lpan =
“LPANName”

pserver =
“PserverName”

}

}

}

}

NodeName
{

.
.
.

}

}

File format for node

identification (same

format for all nodes)

File format for

Egenera BladeFrame

fencing method

Figure 6-20. File Format: nodes.ccs, Egenera BladeFrame Fencing Method

62 Chapter 6. Creating the Cluster Configuration System Files

nodes {

NodeName
{

.
.
.

}

NodeName
{

ip_interfaces
 {

IFNAME
= "
IPAddress
"

}

fence {

MethodName
{

DeviceName
 {

ipaddr =
"
IPAddress
"

}

}

}

}

NodeName
{

.
.
.

}

}

File format for node

identification (same

format for all nodes)

File format for

manual fencing

method

Figure 6-21. File Format: nodes.ccs, Manual Fencing Method

Warning
Manual fencing should not be used in a production environment. Manual fencing depends on human
intervention whenever a node needs recovery. Cluster operation is halted during the intervention.

Chapter 6. Creating the Cluster Configuration System Files 63

Node that will use
cascaded fencing

methods

Fencing method 1

Fencing method 2

Fencing method 3

nodes {

 NodeName {
 .
 .
 .

 }

 NodeName {

 ip_interfaces {

 IFName = "IPAddress"

 }

 fence {

 MethodName {

 DeviceName {

 #Device-specific parameter(s)

 }

 }

 MethodName {

 DeviceName {

 #Device-specific parameter(s)

 }

 }

 MethodName {

 DeviceName {

 #Device-specific parameter(s)

 }

 }

 }

 }

 NodeName {
 .
 .
 .

 }

}

Cascades to next
if fencing fails

Cascades to next
if fencing fails

Returns to first
fencing method

if fencing fails

Figure 6-22. File Format: nodes.ccs, Cascaded Fencing

64 Chapter 6. Creating the Cluster Configuration System Files

nodes {
NodeName {

ip_interfaces {
IFNAME="IPAddress" <-- Must be an IP address; not a name

}
usedev = "NamedDevice" <-- Optional parameter usedev
fence {
.
.
.
}

}
NodeName {
.
.
.
}

}

Figure 6-23. File Structure: Optional usedev Parameter

Parameter Description
DeviceName The name of a fencing device to use with a node. Use a valid fencing

device name specified by a DeviceName parameter in the
fence.ccs file (fence.ccs:fence_devices/DeviceName).

IFName The interface name of the IP address specified. For example: eth0

IPAddress For the ip_interfaces section: The IP address of the node on the
interface specified. GULM uses this parameter only if the optional
usedev parameter is specified in the nodes.ccs file. The usedev
parameter is available only with Red Hat GFS 6.0 for Red Hat
Enterprise Linux 3 Update 5 and later.
For the fence section:
If GNBD fencing — The IP address of this node, the node to be
fenced.
If manual fencing — IP address of this node, the node that needs to
be reset or disconnected from storage.

WARNING: Manual fencing should not be used in a production
environment. Manual fencing depends on human intervention
whenever a node needs recovery. Cluster operation is halted during
the intervention.

LPANName For Egenera BladeFrame fencing: This is the name of the Logical
Processing Area Network (LPAN), of which the node (an Egenera
pServer) to be fenced is a member.

LoginPassword This is the password of the node to be fenced.

MethodName A name describing the fencing method performed by the listed
devices. For example, a MethodName of power could be used to
describe a fencing method using an APC MasterSwitch. Or, a
MethodName of Cascade1 could be used to describe a cascaded
fencing method.

Chapter 6. Creating the Cluster Configuration System Files 65

Parameter Description
NamedDevice Used with usedev. NamedDevice indicates that the IP address is

specified by the optional parameter usedev, and not by the IP address
pulled from libresolv. The usedev and NamedDevice
parameters are available with Red Hat GFS 6.0 for Red Hat Enterprise
Linux 3 Update 5 or later.

NodelistName For xCAT: The node name of the node to be fenced, as defined in the
nodelist.tab file.

NodeName The Linux hostname of the node.
Note: Make sure that you use the Linux hostname and that the
primary IP address of the node is associated with the hostname.
Specifying a NodeName other than the Linux hostname (for example
the interface name) can cause unpredictable results — especially if the
node is connected to multiple networks. To determine the hostname of
a node, you can use the uname -n command at the node. To verify
the IP address associated with the hostname, you can issue a ping
command to the hostname.

PortNumber For power and FC switches: The port number on the switch to which
this node is connected.

For HP RILOE: This is an optional value that defines a local port to be
used. The default value is 8888.

PserverName For Egenera BladeFrame fencing: This is the name of an Egenera
pServer, the node to be fenced.

SwitchNumber For use with APC MasterSwitch: When chaining more than one
switch, this parameter specifies the switch number of the port. This
entry is not required when only one switch is present. (The default
value is 1 if not specified.)

usedev This is an optional parameter available with Red Hat GFS 6.0 for Red
Hat Enterprise Linux 3 Update 5 or later. If usedev is present,
GULM uses the IP address from that device in the ip_interfaces
section. Otherwise GULM uses the IP address from libresolv (as it
does in releases earlier than Red Hat GFS 6.0 for Red Hat Enterprise
Linux 3 Update 5).

UserId The user ID of the node to be fenced.
Table 6-3. File Syntax Description: Variables for nodes.ccs

66 Chapter 6. Creating the Cluster Configuration System Files

nodes {
n01 {

ip_interfaces {
hsi0 = "10.0.0.1"

}
fence {

power {
apc1 {

port = 6
switch = 2

}
}

}
}
n02 {
.
.
.
}

}

Example 6-13. Node Defined for APC Fencing, Single Power Supply

nodes {
n01 {

ip_interfaces {
hsi0 = "10.0.0.1"

}
fence {

power {
apc1 { <----------- Fencing device for power supply 1

port = 6
switch = 1
option = "off" <-- Power down power supply 1

}
apc2 { <----------- Fencing device for power supply 2

port = 7
switch = 2
option = "off" <-- Power down power supply 2

}
apc1 { <----------- Fencing device for power supply 1

port = 6
switch = 1
option = "on" <--- Power up power supply 1

}
apc2 { <----------- Fencing device for power supply 2

port = 7
switch = 2
option = "on" <--- Power up power supply 2

}
}

}
}
n02 {
.
.
.
}

}

Example 6-14. Node Defined for APC Fencing, Dual Power Supplies

Chapter 6. Creating the Cluster Configuration System Files 67

nodes {
n01 {

ip_interfaces {
hsi0 = "10.0.0.1"

}
fence {

power {
wti1 {

port = 1
}

}
}

}
n02 {
.
.
.
}

}

Example 6-15. Node Defined for WTI NPS Fencing

nodes {
n01 {

ip_interfaces {
hsi0 = "10.0.0.1"

}
fence {

san {
silkworm1 {

port = 3
}
silkworm2 { <--- Additional fencing device, for additional

port = 4 path to FC storage
}

}
}

}
n02 {
.
.
.
}

}

Example 6-16. Node Defined for Brocade FC-Switch Fencing

68 Chapter 6. Creating the Cluster Configuration System Files

nodes {
n01 {

ip_interfaces {
hsi0 = "10.0.0.1"

}
fence {

san {
mdfc1 {

port = 3
}
mdfc2 { <--- Additional fencing device, for additional

port = 4 path to FC storage
}

}
}

}
n02 {
.
.
.
}

}

Example 6-17. Node Defined for McData FC-Switch Fencing

nodes {
n01 {

ip_interfaces {
hsi0 = "10.0.0.1"

}
fence {

san {
vixel1 {

port = 3
}
vixel2 { <---- Additional fencing device, for additional

port = 4 path to FC storage
}

}
}

}
n02 {
.
.
.
}

}

Example 6-18. Node Defined for Vixel FC-Switch Fencing

Chapter 6. Creating the Cluster Configuration System Files 69

nodes {
n01 {

ip_interfaces {
hsi0 = "10.0.0.1"

}
fence {

server {
gnbd {

ipaddr = "10.0.1.1"
}

}
}

}
n02 {
.
.
.
}

}

Example 6-19. Node Defined for GNBD Fencing

nodes {
n01 {

ip_interfaces {
hsi0 = "10.0.0.1"

}
fence {

riloe {
riloe1 {

localport = 2345
}

}
}

}
n02 {
.
.
.
}

}

Example 6-20. Node Defined for HP RILOE Fencing

70 Chapter 6. Creating the Cluster Configuration System Files

nodes {
n01 {

ip_interfaces {
hsi0 = "10.0.0.1"

}
fence {

blade-center {
xcat {

nodename = "blade-01"
}

}
}

}
n02 {

ip_interfaces {
hsi0 = "10.0.0.2"

}
fence {

blade-center {
xcat {

nodename = "blade-02"
}

}
}

}
n03 {
.
.
.
}

}

Example 6-21. Nodes Defined for xCAT Fencing

Chapter 6. Creating the Cluster Configuration System Files 71

nodes {
n01 {

ip_interfaces {
hsi0 = "10.0.0.1"

}
fence {

blade-center {
egenera {

lpan = "opsgroup"
pserver = "ops-1

}
}

}
}
n02 {

ip_interfaces {
hsi0 = "10.0.0.2"

}
fence {

blade-center {
egenera {

lpan = "opsgroup"
pserver = "ops-2

}
}

}
}
n03 {
.
.
.
}

}

Example 6-22. Nodes Defined for Egenera BladeFrame Fencing

nodes {
n01 {

ip_interfaces {
hsi0 = "10.0.0.1"

}
fence {

human {
admin {

ipaddr = "10.0.0.1"
}

}
}

}
n02 {
.
.
.
}

}

Example 6-23. Nodes Defined for Manual Fencing

72 Chapter 6. Creating the Cluster Configuration System Files

Warning
Manual fencing should not be used in a production environment. Manual fencing depends on human
intervention whenever a node needs recovery. Cluster operation is halted during the intervention.

nodes {
n01 {

ip_interfaces {
eth0 = "10.0.1.21"

}
fence {

san { <-- Fencing with Brocade FC switch
brocade1 {

port = 1
}

}
power { <-- Fencing with APC MasterSwitch

apc {
port = 1
switch = 1

}
}

}
}
n02 {
.
.
.
}

}

This example shows a node that can be fenced using a Brocade FC switch or an APC MasterSwitch.
If the node must be fenced, the fencing system first attempts to disable the node’s FC port. If that
operation fails, the fencing system attempts to reboot the node using the power switch.

Example 6-24. Nodes Defined for Cascaded Fencing

Chapter 6. Creating the Cluster Configuration System Files 73

nodes {
n01 {

ip_interfaces {
hsi0 = "10.0.0.1"

}
fence {

power { <------------- APC MasterSwitch fencing device
apc1 {

port = 6
switch = 2

}
}

}
n02 {
.
.
.
}

}

Example 6-25. GNBD Server Node Defined for APC Fencing, Single Power Supply

nodes {
n01 {

ip_interfaces {
wizzy = "10.0.0.1" <-- Must be an IP address; not a name

}
usedev = "wizzy" <-- Optional parameter usedev set to "wizzy"
fence {
.
.
.
}

}
n02 {
.
.
.
}

}

Example 6-26. Optional usedev Parameter

74 Chapter 6. Creating the Cluster Configuration System Files

Chapter 7.
Using the Cluster Configuration System
This chapter describes how to use the cluster configuration system (CCS) and consists of the following
sections:

• Section 7.1 Creating a CCS Archive
• Section 7.2 Starting CCS in the Cluster
• Section 7.3 Using Other CCS Administrative Options
• Section 7.4 Changing CCS Configuration Files
• Section 7.5 Alternative Methods to Using a CCA Device
• Section 7.6 Combining CCS Methods

Note
If you are using GFS with Red Hat Cluster, you can create a CCS archive with GFS
Druid. For information about configuring and using GFS with Red Hat Cluster Suite, refer to
Appendix A Using Red Hat GFS with Red Hat Cluster Suite.

Note
If your GFS cluster is configured for GNBD multipath, there are some
considerations you must take into account for the location of CCS files. Refer to
Section 11.2 Considerations for Using GNBD Multipath.

7.1. Creating a CCS Archive
A CCS archive is a collection of CCS configuration files that can be accessed by the cluster. The
ccs_tool command is used to create a CCS archive from a directory containing .ccs configuration
files. This command writes the archive to a shared pool called the CCA device.
A small pool volume may be used as the CCA device. You can determine the size of the CCA
device pool volume as follows: 2 KB per GFS node or 2 MB total, whichever is larger. (Refer
to Section 5.5 Creating a Pool Volume and Section 5.6 Activating/Deactivating a Pool Volume for de-
tails on creating and activating a pool volume for the CCA device.)

7.1.1. Usage
ccs_tool create Directory CCADevice

Directory

The relative path to the directory containing the CCS files for the cluster.

76 Chapter 7. Using the Cluster Configuration System

CCADevice

Specifies the name of the CCA device.

7.1.2. Example
In this example, the name of the cluster is alpha, and the name of the pool is
/dev/pool/alpha_cca. The CCS configuration files in directory /root/alpha/ are used to
create a CCS archive on the CCA device /dev/pool/alpha_cca.

ccs_tool create /root/alpha/ /dev/pool/alpha_cca

7.1.3. Comments

• The -O (override) option can be specified after the command name (ccs_tool -O create) to
forcibly write over the current CCA device contents without a prompt.

Warning
Make sure that you specify the right device if you use the override option. Otherwise, data may be
lost.

• Depending on the size of the device, it may take several seconds to create a CCA device for the first
time due to initialization of the device.

• The ccs_tool command uses the Linux raw-device interface to update and read a CCA device
directly, bypassing operating system caches. Caching effects could otherwise create inconsistent
views of the CCA device between cluster nodes.

7.2. Starting CCS in the Cluster
Once a CCS archive has been created on a CCA device (refer to Section 7.1 Creating a CCS Archive
for details, if necessary), the CCS daemon (ccsd) should be started on all cluster nodes. All cluster
nodes must be able to see the CCA device before the daemon is started.
The CCS daemon provides an interface to configuration data that is independent of the specific loca-
tion where the data is stored.

7.2.1. Usage
ccsd -d CCADevice

CCADevice

Specifies the name of the CCA device.

Chapter 7. Using the Cluster Configuration System 77

Note
You can use the ccsd init.d script included with GFS to automate starting and stopping ccsd. For
more information about GFS init.d scripts, refer to Chapter 12 Using GFS init.d Scripts.

7.2.2. Example
In this example, the CCS daemon is started on a cluster node. This command should be run on all
cluster nodes:

ccsd -d /dev/pool/alpha_cca

7.2.3. Comments
The CCS daemon (ccsd) uses the Linux raw-device interface to update and read a CCA device di-
rectly, bypassing operating system caches. Caching effects could otherwise create inconsistent views
of the CCA device between cluster nodes.

7.3. Using Other CCS Administrative Options
The following sections detail other administrative functions that can be performed by the ccs_tool
command.

7.3.1. Extracting Files from a CCS Archive
When extracting original CCS configuration files from a CCS archive, the ccs_tool extract com-
mand creates a new directory specified on the command line and recreates the CCS files in the direc-
tory. The CCS archive remains unaffected by this command.

7.3.1.1. Usage

ccs_tool extract CCADevice Directory

CCADevice

Specifies the name of the CCA device.

Directory

The relative path to the directory containing the CCS files for the cluster.

7.3.1.2. Example
In this example, the CCS files contained on the CCA device, /dev/pool/alpha_cca, are extracted
and recreated in directory /tmp/alpha-bak/.

ccs_tool extract /dev/pool/alpha_cca /tmp/alpha-bak/

78 Chapter 7. Using the Cluster Configuration System

7.3.2. Listing Files in a CCS Archive
The CCS configuration files contained within a CCS archive can be listed by using the ccs_tool list
command.

7.3.2.1. Usage

ccs_tool list CCADevice

CCADevice

Specifies the name of the CCA device.

7.3.2.2. Example
This example causes the CCS files contained on the CCA device, /dev/pool/alpha_cca, to be
listed.

ccs_tool list /dev/pool/alpha_cca

7.3.3. Comparing CCS Configuration Files to a CCS Archive
The ccs_tool diff command can be used to compare a directory of CCS configuration files with
the configuration files in a CCS archive. The output from the ccs_tool diff command is displayed
for each corresponding file in the specified directory and the CCS archive.

7.3.3.1. Usage

ccs_tool diff CCADevice [Directory]

CCADevice

Specifies the name of the CCA device.

Directory

The relative path to the directory containing the CCS files for the cluster.

7.3.3.2. Example
In this example, the CCS configuration files in directory /root/alpha/ are compared with the con-
figuration files in CCA device /dev/pool/alpha_cca.

ccs_tool diff /dev/pool/alpha_cca /root/alpha/

Chapter 7. Using the Cluster Configuration System 79

7.4. Changing CCS Configuration Files
Based on the LOCK_GULM locking protocol, the following list defines what can or cannot be
changed in a CCS archive while a cluster is running. There are no restrictions to making changes
to configuration files when the cluster is offline.

• New nodes can be defined in the nodes.ccs file.
• Unused node definitions can be removed from the nodes.ccs file.
• New fencing devices can be defined in the fence.ccs file.
• The locking servers array (servers =) in cluster.ccs:cluster/lock_gulm cannot be

changed.
• The fencing parameters for an existing node definition in nodes.ccs can be changed.
• The IP address of an existing node definition in the nodes.ccs file can only be changed if the

node does not have any GFS file systems mounted and is not running a LOCK_GULM server.

7.4.1. Example Procedure
This example procedure shows how to change configuration files in a CCS archive.

1. Extract configuration files from the CCA device into temporary directory /root/alpha-new/.
ccs_tool extract /dev/pool/alpha_cca /root/alpha-new/

2. Make changes to the configuration files in /root/alpha-new/.
3. Create a new CCS archive on the CCA device by using the -O (override) flag to forcibly over-

write the existing CCS archive.
ccs_tool -O create /root/alpha-new/ /dev/pool/alpha_cca

7.5. Alternative Methods to Using a CCA Device
If it is not possible to reserve shared storage for use as a CCA device, you can use two alternative
methods:

• Section 7.5.1 CCA File and Server
• Section 7.5.2 Local CCA Files
Neither of these methods requires shared storage to store CCS data.

7.5.1. CCA File and Server
The first alternative to a CCA device is to use a single network server to serve CCS configuration
files to all nodes in the cluster. If used, this CCS server is a single point of failure in a cluster. If a
single (non-redundant) LOCK_GULM server daemon is being used, it would be reasonable to run a
CCS server on the same node as the LOCK_GULM server. The CCS server does not have failover
capabilities.
The CCS server is called ccs_servd, it can be run on any node in or out of the cluster. When
CCS daemons (ccsd) are started on cluster nodes, the IP address of the node running ccs_servd is
specified instead of the name of the CCA device. The name of the cluster is also passed to ccsd.
The CCS server does not read CCS files directly; rather, it reads a CCA file that is a local file contain-
ing a CCS archive.

80 Chapter 7. Using the Cluster Configuration System

Steps related to CCS in the setup procedure must be modified to use a CCS server in place of a CCA
device.

Note
ccs_servd provides information to any computer that can connect to it. Therefore, ccs_servd should
not be used at sites where untrusted nodes can contact the CCS server.

7.5.1.1. Creating a CCA File
Like a CCA device, a CCA file is created by the ccs_tool command from a directory of CCS
configuration files. Instead of specifying a CCA device as the last parameter when creating an archive,
a local file name is specified. The ccs_tool command creates the named file, which is the CCA file.
That file should be named ClusterName with a .cca extension. (ClusterName is the user-
supplied variable that specifies the name of the cluster.) The CCA file must be located on the node
that runs ccs_servd.

7.5.1.1.1. Usage

ccs_tool create Directory CCAFile

Directory

The relative path to the directory containing the CCS files for the cluster.

CCAFile

Specifies the CCA file to create.

7.5.1.1.2. Example
In this example, the name of the cluster is alpha and the name of the CCA file is alpha.cca. The
CCA file is saved in the /etc/sistina/ccs-build/ directory, which is the default location where
ccs_servd looks for CCA files.

ccs_tool create /root/alpha/ /etc/sistina/ccs-build/alpha.cca

7.5.1.2. Starting the CCS Server
There are two parts to starting CCS in the cluster when using a CCS server. The first is starting
ccs_servd and the second is starting ccsd on all the cluster nodes. When starting ccs_servd,
no command line options are required unless the CCA file is saved in a location other than
/etc/sistina/ccs-build/.

Chapter 7. Using the Cluster Configuration System 81

7.5.1.2.1. Usage

ccs_servd

or

ccs_servd -p Path

Path

Specifies an alternative location of CCA files.

7.5.1.2.2. Examples
This example shows starting the CCS server normally; that is, using the default location for CCA files.

ccs_servd

This example shows starting the CCS server using a user-defined location for CCA files. In this case,
CCA files are saved in /root/cca/.

ccs_servd -p /root/cca/

7.5.1.3. Starting the CCS Daemon
When using a CCS server, ccsd must connect to it over the network, and requires two parameters on
the ccsd command line: the IP address (and optional port number) of the node running ccs_servd,
and the name of the cluster.

7.5.1.3.1. Usage

ccsd -s IPAddress[:PortNumber] -c ClusterName

IPAddress

The IP address of the node running the CCS server.

:PortNumber

(Optional) The non-default port number. A colon and port number can optionally follow the
IPAddress to specify a non-default port number: IPAddress:PortNumber.

ClusterName

Specifies the name of the cluster. The CCS server uses this to pick the correct CCA file that is
named for the cluster.

7.5.1.3.2. Example
This example starts ccsd on a node for cluster alpha when using a CCS server with the IP address
shown.

ccsd -s 10.0.5.1 -c alpha

82 Chapter 7. Using the Cluster Configuration System

7.5.2. Local CCA Files
An alternative to both a CCA device and a CCS server is to replicate CCA files on all cluster nodes.

Note
Care must be taken to keep all the copies identical.

A CCA file is created using the same steps as for a CCS server. The CCA file is manually copied to
all cluster nodes.

7.5.2.1. Starting the CCS Daemon
When the CCS daemon is started on each node, it must be given the location of the local copy of the
CCA file.

7.5.2.2. Usage

ccsd -f File

File

Specifies the local copy of the CCA file.

7.5.2.3. Example
This example starts ccsd on a node using a local copy of a CCA file.

ccsd -f /etc/sistina/ccs-build/alpha.cca

7.6. Combining CCS Methods
The shared block-device methodology described at the beginning of this chapter is the
recommended method for storing CCS data (Section 7.1 Creating a CCS Archive and
Section 7.2 Starting CCS in the Cluster). The advantages are that there is no server point-of-failure
and that updates to the CCS archive happen atomically.
However, not every cluster has every node connected to the shared storage. For example, a clus-
ter may be built with external lock servers that do not have access to the shared storage. In that
case, the client/server methodology (Section 7.5.1 CCA File and Server) could be employed, but that
approach introduces a server point-of-failure. Also, local file archives could be used on each node
(Section 7.5.2 Local CCA Files), but that approach makes updating the CCS archives difficult.
The best approach for storing CCS data may be a combination of the shared-device method and the
local-files method. For example, the cluster nodes attached to shared storage could use the shared-
device method, and the other nodes in the cluster could use the local-files approach. Combining those
two methods eliminates the possible point-of-failure and reduces the effort required to update a CCS
archive.

Chapter 7. Using the Cluster Configuration System 83

Note
When you update a CCS archive, update the shared-device archive first, then update the local
archives. Be sure to keep the archives synchronized .

84 Chapter 7. Using the Cluster Configuration System

Chapter 8.
Using Clustering and Locking Systems
This chapter describes how to use the clustering and locking systems available with GFS, and consists
of the following sections:

• Section 8.1 Locking System Overview
• Section 8.2 LOCK_GULM
• Section 8.3 LOCK_NOLOCK

8.1. Locking System Overview
The Red Hat GFS interchangeable locking/clustering mechanism is made possible by the
lock_harness.o kernel module. The GFS kernel module gfs.o connects to one end of the
harness, and lock modules connect to the other end. When a GFS file system is created, the lock
protocol (or lock module) that it uses is specified. The kernel module for the specified lock protocol
must be loaded subsequently to mount the file system. The following lock protocols are available
with GFS:

• LOCK_GULM — Implements both RLM and SLM and is the recommended choice
• LOCK_NOLOCK — Provides no locking and allows GFS to be used as a local file system

8.2. LOCK_GULM
RLM and SLM are both implemented by the LOCK_GULM system.
LOCK_GULM is based on a central server daemon that manages lock and cluster state for all
GFS/LOCK_GULM file systems in the cluster. In the case of RLM, multiple servers can be run
redundantly on multiple nodes. If the master server fails, another "hot-standby" server takes over.
The LOCK_GULM server daemon is called lock_gulmd. The kernel module for GFS nodes using
LOCK_GULM is called lock_gulm.o. The lock protocol (LockProto) as specified when creating a
GFS/LOCK_GULM file system is called lock_gulm (lower case, with no .o extension).

Note
You can use the lock_gulmd init.d script included with GFS to automate starting
and stopping lock_gulmd. For more information about GFS init.d scripts, refer to
Chapter 12 Using GFS init.d Scripts.

8.2.1. Selection of LOCK_GULM Servers
The nodes selected to run the lock_gulmd server are specified in the cluster.ccs
configuration file (cluster.ccs:cluster/lock_gulm/servers). Refer to
Section 6.5 Creating the cluster.ccs File.

86 Chapter 8. Using Clustering and Locking Systems

For optimal performance, lock_gulmd servers should be run on dedicated nodes; however, they can
also be run on nodes using GFS. All nodes, including those only running lock_gulmd, must be listed
in the nodes.ccs configuration file (nodes.ccs:nodes).

8.2.2. Number of LOCK_GULM Servers
You can use just one lock_gulmd server; however, if it fails, the entire cluster that depends on it
must be reset. For that reason, you can run multiple instances of the lock_gulmd server daemon
on multiple nodes for redundancy. The redundant servers allow the cluster to continue running if the
master lock_gulmd server fails.
Over half of the lock_gulmd servers on the nodes listed in the cluster.ccs file
(cluster.ccs:cluster/lock_gulm/servers) must be operating to process locking requests
from GFS nodes. That quorum requirement is necessary to prevent split groups of servers from
forming independent clusters — which would lead to file system corruption.
For example, if there are three lock_gulmd servers listed in the cluster.ccs configuration file,
two of those three lock_gulmd servers (a quorum) must be running for the cluster to operate.
A lock_gulmd server can rejoin existing servers if it fails and is restarted.
When running redundant lock_gulmd servers, the minimum number of nodes required is three; the
maximum number of nodes is five.

8.2.3. Starting LOCK_GULM Servers
If no lock_gulmd servers are running in the cluster, take caution before restarting them — you
must verify that no GFS nodes are hung from a previous instance of the cluster. If there are hung
GFS nodes, reset them before starting lock_gulmd servers. Resetting the hung GFS nodes before
starting lock_gulmd servers prevents file system corruption. Also, be sure that all nodes running
lock_gulmd can communicate over the network; that is, there is no network partition.
The lock_gulmd server is started with no command line options.

8.2.4. Fencing and LOCK_GULM
Cluster state is managed in the lock_gulmd server. When GFS nodes or server nodes fail, the
lock_gulmd server initiates a fence operation for each failed node and waits for the fence to complete
before proceeding with recovery.
The master lock_gulmd server fences failed nodes by calling the fence_node command with the
name of the failed node. That command looks up fencing configuration in CCS to carry out the fence
operation.
When using RLM, you need to use a fencing method that shuts down and reboots a node. With RLM
you cannot use any method that does not reboot the node.

8.2.5. Shutting Down a LOCK_GULM Server
Before shutting down a node running a LOCK_GULM server, lock_gulmd should be terminated
using the gulm_tool command. If lock_gulmd is not properly stopped, the LOCK_GULM server
may be fenced by the remaining LOCK_GULM servers.

Chapter 8. Using Clustering and Locking Systems 87

Caution
Shutting down one of multiple redundant LOCK_GULM servers may result in suspension of cluster
operation if the remaining number of servers is half or less of the total number of servers listed in the
cluster.ccs file (cluster.ccs:lock_gulm/servers).

8.2.5.1. Usage

gulm_tool shutdown IPAddress

IPAddress

Specifies the IP address or hostname of the node running the instance of lock_gulmd to be
terminated.

8.3. LOCK_NOLOCK
The LOCK_NOLOCK system allows GFS to be used as a local file system on a single node.
The kernel module for a GFS/LOCK_NOLOCK node is lock_nolock.o. The lock protocol as spec-
ified when creating a GFS/LOCK_NOLOCK file system is called lock_nolock (lower case, with no
.o extension).

Caution
Do not allow multiple nodes to mount the same file system while LOCK_NOLOCK is used. Doing so
causes one or more nodes to panic their kernels, and may cause file system corruption.

88 Chapter 8. Using Clustering and Locking Systems

Chapter 9.
Managing GFS
This chapter describes the tasks and commands for managing GFS and consists of the following
sections:

• Section 9.1 Making a File System
• Section 9.2 Mounting a File System
• Section 9.3 Unmounting a File System
• Section 9.4 GFS Quota Management
• Section 9.5 Growing a File System
• Section 9.6 Adding Journals to a File System
• Section 9.7 Direct I/O
• Section 9.8 Data Journaling
• Section 9.9 Configuring atime Updates
• Section 9.10 Suspending Activity on a File System
• Section 9.11 Displaying Extended GFS Information and Statistics
• Section 9.12 Repairing a File System
• Section 9.13 Context-Dependent Path Names
• Section 9.14 Shutting Down a GFS Cluster
• Section 9.15 Starting a GFS Cluster

9.1. Making a File System
Making a GFS file system is one of the final tasks in the process of configuring and setting up a
GFS cluster. (Refer to Chapter 4 Initial Configuration for more information.) Once a cluster is set
up and running, additional GFS file systems can be made and mounted without additional cluster-
configuration steps.
A file system is created on a block device, which is usually an activated Pool volume. (Refer to
Chapter 5 Using the Pool Volume Manager for further details.) The following information is required
to run the gfs_mkfs command:

• Lock protocol/module name (for example, lock_gulm)
• Cluster name (from cluster.ccs)
• Number of nodes that may be mounting the file system

9.1.1. Usage
gfs_mkfs -p LockProtoName -t LockTableName -j Number BlockDevice

90 Chapter 9. Managing GFS

Warning
Make sure that you are very familiar with using the LockProtoName and LockTableName parame-
ters. Improper use of the LockProtoName and LockTableName parameters may cause file system
or lock space corruption.

LockProtoName

Specifies the name of the locking protocol (typically lock_gulm) to use.

LockTableName

This parameter has two parts separated by a colon (no spaces) as follows:
ClusterName:FSName

• ClusterName, the cluster name, is set in the cluster.ccs file
(cluster.ccs:cluster/name).

• FSName, the file system name, can be 1 to 16 characters long, and the name must be unique
among all file systems in the cluster.

Number

Specifies the number of journals to be created by the gfs_mkfs command. One journal is re-
quired for each node that mounts the file system. (More journals can be specified to allow for
easier, future expansion.)

BlockDevice

Usually specifies a pool volume, but any block device can be specified.

9.1.2. Examples
In this example, lock_gulm is the locking protocol that the file system uses. The cluster name is
alpha, and the file system name is gfs1. The file system contains eight journals and is created on the
pool0 block device.

gfs_mkfs -p lock_gulm -t alpha:gfs1 -j 8 /dev/pool/pool0

In this example, a second lock_gulm file system is made, which can be used in cluster alpha. The
file system name is gfs2. The file system contains eight journals and is created on the pool1 block
device.

gfs_mkfs -p lock_gulm -t alpha:gfs2 -j 8 /dev/pool/pool1

9.1.3. Complete Options
Table 9-1 describes the gfs_mkfs command options (flags and parameters).

Chapter 9. Managing GFS 91

Flag Parameter Description
-b BlockSize Sets the file system block size to BlockSize.

Default block size is 4096 bytes.
-D Enables debugging output.

-h Help. Displays available options, then exits.
-J MegaBytes Specifies the size of the journal in megabytes. Default

journal size is 128 megabytes. The minimum size is
32 megabytes.

-j Number Specifies the number of journals to be created by the
gfs_mkfs command. One journal is required for
each node that mounts the file system.
Note: More journals than are needed can be specified
at creation time to allow for future expansion.

-P Tells the gfs_mkfs command that the underlying
device is a pool. The gfs_mkfs command then asks
the pool about its layout. The -p flag overrides the -j
and -J flags.

-p LockProtoName Specifies the name of the locking protocol to use.
Recognized cluster-locking protocols include:
LOCK_GULM — The standard GFS locking
module.
LOCK_NOLOCK — May be used when GFS is
acting as a local file system (one node only).

-O Prevents the gfs_mkfs command from asking for
confirmation before writing the file system.

-q Quiet. Do not display anything.
-r MegaBytes Specifies the size of the resource groups in megabytes.

Default resource group size is 256 megabytes.

-s Blocks Specifies the journal-segment size in file system
blocks.

-t LockTableName This parameter has two parts separated by a colon
(no spaces) as follows: ClusterName:FSName.
ClusterName is set in the cluster.ccs file
(cluster.ccs:cluster/name).
FSName, the file system name, can be 1 to 16
characters in length, and the name must be unique
among all file systems in the cluster.

-V Displays command version information, then exits.
Table 9-1. Command Options: gfs_mkfs

9.2. Mounting a File System
Before you can mount a GFS file system, the file system must exist (refer to
Section 9.1 Making a File System), the pool volume where the file system exists must be
activated, and the supporting clustering and locking systems must be started (refer to

92 Chapter 9. Managing GFS

Chapter 4 Initial Configuration). After those requirements have been met, you can mount the GFS
file system as you would any Linux file system.
To manipulate file ACLs, you must mount the file system with the -o acl mount option. If a file sys-
tem is mounted without the -o acl mount option, users are allowed to view ACLs (with getfacl),
but are not allowed to set them (with setfacl).

9.2.1. Usage
Mounting Without ACL Manipulation

mount -t gfs BlockDevice MountPoint

Mounting With ACL Manipulation

mount -t gfs -o acl BlockDevice MountPoint

-o acl

GFS-specific option to allow manipulating file ACLs.

BlockDevice

Specifies the block device where the GFS file system resides.

MountPoint

Specifies the directory where the GFS file system should be mounted.

9.2.2. Example
In this example, the GFS file system on the pool0 block device is mounted on the /gfs1/ directory.

mount -t gfs /dev/pool/pool0 /gfs1

9.2.3. Complete Usage
mount -t gfs BlockDevice MountPoint -o option

The -o option consists of GFS-specific options (refer to Table 9-2) or acceptable standard Linux
mount -o options, or a combination of both. Multiple option parameters are separated by a comma
and no spaces.

Note
The mount command is a Linux system command. In addition to using GFS-specific options de-
scribed in this section, you can use other, standard, mount command options (for example, -r). For
information about other Linux mount command options, see the Linux mount man page.

Table 9-2 describes the available GFS-specific options that can be passed to GFS at mount time.

Chapter 9. Managing GFS 93

Option Description
-o acl Allows manipulating file ACLs. If a file system is

mounted without the -o acl mount option, users are
allowed to view ACLs (with getfacl), but are not
allowed to set them (with setfacl).

hostdata=nodename LOCK_GULM file systems use this information to set
the local node name, overriding the usual selection of
node name from uname -n.

lockproto=LockModuleName Allows the user to specify which locking protocol to
use with the file system. If LockModuleName is not
specified, the locking protocol name is read from the
file system superblock.

locktable=LockTableName Allows the user to specify which locking table to use
with the file system.

upgrade Upgrade the on-disk format of the file system so that
it can be used by newer versions of GFS.

ignore_local_fs
Caution: This option should not be used
when GFS file systems are shared.

Forces GFS to treat the file system as a multihost file
system. By default, using LOCK_NOLOCK
automatically turns on the localcaching and
localflocks flags.

localcaching
Caution: This option should not be used
when GFS file systems are shared.

Tells GFS that it is running as a local file system. GFS
can then turn on selected optimization capabilities
that are not available when running in cluster mode.
The localcaching flag is automatically turned on
by LOCK_NOLOCK.

localflocks
Caution: This option should not be used
when GFS file systems are shared.

Tells GFS to let the VFS (virtual file system) layer do
all flock and fcntl. The localflocks flag is
automatically turned on by LOCK_NOLOCK.

Table 9-2. GFS-Specific Mount Options

9.3. Unmounting a File System
The GFS file system can be unmounted the same way as any Linux file system.

Note
The umount command is a Linux system command. Information about this command can be found in
the Linux umount command man pages.

94 Chapter 9. Managing GFS

9.3.1. Usage
umount MountPoint

MountPoint

Specifies the directory where the GFS file system should be mounted.

9.4. GFS Quota Management
File system quotas are used to limit the amount of file-system space a user or group can use. A user or
group does not have a quota limit until one is set. GFS keeps track of the space used by each user and
group even when there are no limits in place. GFS updates quota information in a transactional way
so system crashes do not require quota usages to be reconstructed.
To prevent a performance slowdown, a GFS node synchronizes updates to the quota file only pe-
riodically. The "fuzzy" quota accounting can allow users or groups to slightly exceed the set limit.
To minimize this, GFS dynamically reduces the synchronization period as a "hard" quota limit is
approached.
GFS uses its gfs_quota command to manage quotas. Other Linux quota facilities cannot be used
with GFS.

9.4.1. Setting Quotas
Two quota settings are available for each user ID (UID) or group ID (GID): a hard limit and a warn
limit.
A hard limit is the amount space that can be used. The file system will not let the user or group use
more than that amount of disk space. A hard limit value of zero means that no limit is enforced.
A warn limit is usually a value less than the hard limit. The file system will notify the user or group
when the warn limit is reached to warn them of the amount of space they are using. A warn limit value
of zero means that no limit is enforced.
Limits are set using the gfs_quota command. The command only needs to be run on a single node
where GFS is mounted.

9.4.1.1. Usage
Setting Quotas, Hard Limit

gfs_quota limit -u User -l Size -f MountPoint

gfs_quota limit -g Group -l Size -f MountPoint

Setting Quotas, Warn Limit

gfs_quota warn -u User -l Size -f MountPoint

gfs_quota warn -g Group -l Size -f MountPoint

User

A user ID to limit or warn. It can be either a user name from the password file or the UID number.

Chapter 9. Managing GFS 95

Group

A group ID to limit or warn. It can be either a group name from the group file or the GID number.

Size

Specifies the new value to limit or warn. By default, the value is in units of megabytes. The
additional -k, -s and -b flags change the units to kilobytes, sectors, and file-system blocks,
respectively.

MountPoint

Specifies the GFS file system to which the actions apply.

9.4.1.2. Examples
This example sets the hard limit for user Bert to 1024 megabytes (1 gigabyte) on file system /gfs.

gfs_quota limit -u Bert -l 1024 -f /gfs

This example sets the warn limit for group ID 21 to 50 kilobytes on file system /gfs.

gfs_quota warn -g 21 -l 50 -k -f /gfs

9.4.2. Displaying Quota Limits and Usage
Quota limits and current usage can be displayed for a specific user or group using the gfs_quota
get command. The entire contents of the quota file can also be displayed using the gfs_quota
list command, in which case all IDs with a non-zero hard limit, warn limit, or value are listed.

9.4.2.1. Usage
Displaying Quota Limits for a User

gfs_quota get -u User -f MountPoint

Displaying Quota Limits for a Group

gfs_quota get -g Group -f MountPoint

Displaying Entire Quota File

gfs_quota list -f MountPoint

User

A user ID to display information about a specific user. It can be either a user name from the
password file or the UID number.

Group

A group ID to display information about a specific group. It can be either a group name from the
group file or the GID number.

96 Chapter 9. Managing GFS

MountPoint

Specifies the GFS file system to which the actions apply.

9.4.2.2. Command Output
GFS quota information from the gfs_quota command is displayed as follows:

user User: limit:LimitSize warn:WarnSize value:Value

group Group: limit:LimitSize warn:WarnSize value:Value

The LimitSize, WarnSize, and Value numbers (values) are in units of megabytes by default.
Adding the -k, -s, or -b flags to the command line change the units to kilobytes, sectors, or file
system blocks, respectively.

User

A user name or ID to which the data is associated.

Group

A group name or ID to which the data is associated.

LimitSize

The hard limit set for the user or group. This value is zero if no limit has been set.

Value

The actual amount of disk space used by the user or group.

9.4.2.3. Comments
When displaying quota information, the gfs_quota command does not resolve UIDs and GIDs into
names if the -n option is added to the command line.
Space allocated to GFS’s hidden files can be left out of displayed values for the root UID and GID
by adding the -d option to the command line. This is useful when trying to match the numbers from
gfs_quota with the results of a du command.

9.4.2.4. Examples
This example displays quota information for all users and groups that have a limit set or are using any
disk space on file system /gfs.

gfs_quota list -f /gfs

This example displays quota information in sectors for group users on file system /gfs.

gfs_quota get -g users -f /gfs -s

Chapter 9. Managing GFS 97

9.4.3. Synchronizing Quotas
GFS stores all quota information in its own internal file on disk. A GFS node does not update this
quota file for every file-system write; rather, it updates the quota file once every 60 seconds. This is
necessary to avoid contention among nodes writing to the quota file, which would cause a slowdown
in performance.
As a user or group approaches their quota limit, GFS dynamically reduces the time between its quota-
file updates to prevent the limit from being exceeded. The normal time period between quota synchro-
nizations is a tunable parameter, quota_quantum, and can be changed using the gfs_tool com-
mand. By default, the time period is 60 seconds. Also, the quota_quantum parameter must be set on
each node and each time the file system is mounted. (Changes to the quota_quantum parameter are
not persistent across unmounts.)
You can use the gfs_quota sync command to synchronize the quota information from a node to
the on-disk quota file between the automatic updates performed by GFS.

9.4.3.1. Usage
Synchronizing Quota Information

gfs_quota sync -f MountPoint

MountPoint

Specifies the GFS file system to which the actions apply.
Tuning the Time Between Synchronizations

gfs_tool settune MountPoint quota_quantum Seconds

MountPoint

Specifies the GFS file system to which the actions apply.

Seconds

Specifies the new time period between regular quota-file synchronizations by GFS. Smaller val-
ues may increase contention and slow down performance.

9.4.3.2. Examples
This example synchronizes the quota information from the node it is run on to file system /gfs.

gfs_quota sync -f /gfs

This example changes the default time period between regular quota-file updates to one hour (3600
seconds) for file system /gfs on a single node.

gfs_tool settune /gfs quota_quantum 3600

98 Chapter 9. Managing GFS

9.4.4. Disabling/Enabling Quota Enforcement
Enforcement of quotas can be disabled for a file system without clearing the limits set for all users
and groups. Enforcement can also be enabled. Disabling and enabling of quota enforcement is
done by changing a tunable parameter, quota_enforce, with the gfs_tool command. The
quota_enforce parameter must be disabled or enabled on each node where quota enforcement
should be disabled/enabled. Each time the file system is mounted, enforcement is enabled by default.
(Disabling is not persistent across unmounts.)

9.4.4.1. Usage

gfs_tool settune MountPoint quota_enforce {0|1}

MountPoint

Specifies the GFS file system to which the actions apply.

quota_enforce {0|1}

0 = disabled
1 = enabled

9.4.4.2. Comments
A value of 0 disables enforcement. Enforcement can be enabled by running the command with a value
of 1 (instead of 0) as the final command line parameter. Even when GFS is not enforcing quotas, it
still keeps track of the file system usage for all users and groups so that quota-usage information does
not require rebuilding after re-enabling quotas.

9.4.4.3. Examples
This example disables quota enforcement on file system /gfs.

gfs_tool settune /gfs quota_enforce 0

This example enables quota enforcement on file system /gfs.

gfs_tool settune /gfs quota_enforce 1

9.4.5. Disabling/Enabling Quota Accounting
By default, GFS keeps track of disk usage for every user and group even when no quota limits have
been set. This accounting incurs some overhead that is unnecessary if quotas are not used. This quota
accounting can be completely disabled by setting the quota_account tunable parameter to 0. This
must be done on each node and after each mount. (The 0 setting is not persistent across unmounts.)
Quota accounting can be enabled by setting the quota_account tunable parameter to 1.

9.4.5.1. Usage

gfs_tool settune MountPoint quota_account {0|1}

Chapter 9. Managing GFS 99

MountPoint

Specifies the GFS file system to which the actions apply.

quota_account {0|1}

0 = disabled
1 = enabled

9.4.5.2. Comments
To enable quota accounting on a file system, the quota_account parameter must be set back to 1. Af-
terward, the GFS quota file must be initialized to account for all current disk usage for users and groups
on the file system. The quota file is initialized by running: gfs_quota init -f MountPoint.

Note
Initializing the quota file requires scanning the entire file system and may take a long time.

9.4.5.3. Examples
This example disables quota accounting on file system /gfs on a single node.

gfs_tool settune /gfs quota_account 0

This example enables quota accounting on file system /gfs on a single node and initializes the quota
file.

gfs_tool settune /gfs quota_account 1

gfs_quota init -f /gfs

9.5. Growing a File System
The gfs_grow command is used to expand a GFS file system after the device where the file system
resides has been expanded. Running a gfs_grow command on an existing GFS file system fills all
spare space between the current end of the file system and the end of the device with a newly initialized
GFS file system extension. When the fill operation is completed, the resource index for the file system
is updated. All nodes in the cluster can then use the extra storage space that has been added.
The gfs_grow command can only be run on a mounted file system, but only needs to be run on one
node in the cluster. All the other nodes sense that the expansion has occurred and automatically start
using the new space.
To verify that the changes were successful, you can use the gfs_grow command with the -T (test) and
-v (verbose) flags. Running the command with those flags displays the current state of the mounted
GFS file system.

100 Chapter 9. Managing GFS

9.5.1. Usage
gfs_grow MountPoint

MountPoint

Specifies the GFS file system to which the actions apply.

9.5.2. Comments
Before running the gfs_grow command:

• Back up important data on the file system.
• Display the pool volume that is used by the file system to be expanded by running a gfs_tool df
MountPoint command.

• Expand the underlying pool volume with a pool_tool -g command. Refer to
Section 5.8 Growing a Pool Volume for additional information.

After running the gfs_grow command, run a df command to check that the new space is now avail-
able in the file system.

9.5.3. Examples
In this example, the file system on the /gfs1/ directory is expanded.

gfs_grow /gfs1

In this example, the state of the mounted file system is checked.

gfs_grow -Tv /gfs1

9.5.4. Complete Usage
gfs_grow [Options] {MountPoint | Device} [MountPoint | Device]

MountPoint

Specifies the directory where the GFS file system is mounted.

Device

Specifies the device node of the file system.
Table 9-3 describes the GFS-specific options that can be used while expanding a GFS file system.

Chapter 9. Managing GFS 101

Option Description
-h Help. Display a short usage message, then exist.
-q Quiet. Turn down the verbosity level.

-T Test. Do all calculations, but do not write any data to the disk and do
not expand the file system.

-V Display command version information, then exit.
-v Turn up the verbosity of messages.

Table 9-3. GFS-specific Options Available While Expanding A File System

9.6. Adding Journals to a File System
The gfs_jadd command is used to add journals to a GFS file system after the device where the file
system resides has been expanded. Running a gfs_jadd command on a GFS file system uses space
between the current end of the file system and the end of the device where the file system resides.
When the fill operation is completed, the journal index is updated.
The gfs_jadd command can only be run on a mounted file system, but it only needs to be run on one
node in the cluster. All the other nodes sense that the expansion has occurred.
To verify that the changes were successful, you can use the gfs_jadd command with the -T (test) and
-v (verbose) flags. Running the command with those flags displays the current state of the mounted
GFS file system.

9.6.1. Usage
gfs_jadd -j Number MountPoint

Number

Specifies the number of new journals to be added.

MountPoint

Specifies the directory where the GFS file system is mounted.

9.6.2. Comments
Before running the gfs_jadd command:

• Back up important data on the file system.
• Run a gfs_tool df MountPoint command to display the pool volume used by the file system

where journals will be added.
• Expand the underlying pool volume with a pool_tool -g command. Refer to

Section 5.8 Growing a Pool Volume for additional information.
After running the gfs_jadd command, run a gfs_jadd command with the -T and -v flags enabled
to check that the new journals have been added to the file system.

102 Chapter 9. Managing GFS

9.6.3. Examples
In this example, one journal is added to the file system on the /gfs1/ directory.

gfs_jadd -j1 /gfs1

In this example, two journals are added to the file system on the /gfs1/ directory.

gfs_jadd -j2 /gfs1

In this example, the current state of the file system on the /gfs1/ directory can be checked for the
new journals.

gfs_jadd -Tv /gfs1

9.6.4. Complete Usage
gfs_jadd [Options] {MountPoint | Device} [MountPoint | Device]

MountPoint

Specifies the directory where the GFS file system is mounted.

Device

Specifies the device node of the file system.
Table 9-4 describes the GFS-specific options that can be used when adding journals to a GFS file
system.

Flag Parameter Description
-h Help. Displays short usage message, then exits.

-J MegaBytes Specifies the size of the new journals in MBytes. Default journal
size is 128 MBytes. The minimum size is 32 MBytes. To add
journals of different sizes to the file system, the gfs_jadd
command must be run for each size journal. The size specified is
rounded down so that it is a multiple of the journal-segment size
that was specified when the file system was created.

-j Number Specifies the number of new journals to be added by the
gfs_jadd command. The default value is 1.

-T Test. Do all calculations, but do not write any data to the disk and
do not add journals to the file system. Enabling this flag helps
discover what the gfs_jadd command would have done if it
were run without this flag. Using the -v flag with the -T flag
turns up the verbosity level to display more information.

-q Quiet. Turns down the verbosity level.

-V Display command version information, then exit.
-v Turn up the verbosity of messages.

Table 9-4. GFS-specific Options Available When Adding Journals

Chapter 9. Managing GFS 103

9.7. Direct I/O
Direct I/O is a feature of the file system whereby file reads and writes go directly from the applications
to the storage device, bypassing the operating system read and write caches. Direct I/O is used by only
a few applications that manage their own caches, such as databases.
Direct I/O is invoked by an application opening a file with the O_DIRECT flag. Alternatively, GFS
can attach a direct I/O attribute to a file, in which case direct I/O is used regardless of how the file is
opened.
When a file is opened with O_DIRECT, or when a GFS direct I/O attribute is attached to a file, all I/O
operations must be done in block-size multiples of 512 bytes. The memory being read from or written
to must also be 512-byte aligned.
One of the following methods can be used to enable direct I/O on a file:

• O_DIRECT

• GFS file attribute
• GFS directory attribute

9.7.1. O_DIRECT
If an application uses the O_DIRECT flag on an open() system call, direct I/O is used for the opened
file.
To cause the O_DIRECT flag to be defined with recent glibc libraries, define _GNU_SOURCE at the
beginning of a source file before any includes, or define it on the cc line when compiling.

Note
Linux kernels from some distributions do not support use of the O_DIRECT flag.

9.7.2. GFS File Attribute
The gfs_tool command can be used to assign a direct I/O attribute flag, directio, to a regular
GFS file. The directio flag can also be cleared.

9.7.2.1. Usage
Set Direct I/O Attribute Flag

gfs_tool setflag directio File

Clear Direct I/O Attribute Flag

gfs_tool clearflag directio File

File

Specifies the file where the directio flag is assigned.

104 Chapter 9. Managing GFS

9.7.2.2. Example
In this example, the command sets the directio flag on the file named datafile in directory
/gfs1/.

gfs_tool setflag directio /gfs1/datafile

9.7.3. GFS Directory Attribute
The gfs_tool command can be used to assign a direct I/O attribute flag, inherit_directio, to a
GFS directory. Enabling the inherit_directio flag on a directory causes all newly created regular
files in that directory to automatically inherit the directio flag. Also, the inherit_directio flag
is inherited by any new subdirectories created in the directory. The inherit_directio flag can also
be cleared.

9.7.3.1. Usage
Setting the inherit_directio flag

gfs_tool setflag inherit_directio Directory

Setting the inherit_directio flag

gfs_tool clearflag inherit_directio Directory

Directory

Specifies the directory where the inherit_directio flag is set.

9.7.3.2. Example
In this example, the command sets the inherit_directio flag on the directory named
/gfs1/data/.

gfs_tool setflag inherit_directio /gfs1/data/

9.8. Data Journaling
Ordinarily, GFS writes only metadata to its journal. File contents are subsequently written to disk by
the kernel’s periodic sync that flushes file system buffers. An fsync() call on a file causes the file’s
data to be written to disk immediately. The call returns when the disk reports that all data is safely
written.
Data journaling can result in a reduced fsync() time, especially for small files, because the file data
is written to the journal in addition to the metadata. An fsync() returns as soon as the data is written
to the journal, which can be substantially faster than the time it takes to write the file data to the main
file system.
Applications that rely on fsync() to sync file data may see improved performance by using data
journaling. Data journaling can be enabled automatically for any GFS files created in a flagged direc-

Chapter 9. Managing GFS 105

tory (and all its subdirectories). Existing files with zero length can also have data journaling turned on
or off.
Using the gfs_tool command, data journaling is enabled on a directory (and all its subdirectories)
or on a zero-length file by setting the inherit_jdata or jdata attribute flags to the directory or
file, respectively. The directory and file attribute flags can also be cleared.

9.8.1. Usage
Setting and Clearing the inherit_jdata Flag

gfs_tool setflag inherit_jdata Directory
gfs_tool clearflag inherit_jdata Directory

Setting and Clearing the jdata Flag

gfs_tool setflag jdata File
gfs_tool clearflag jdata File

Directory

Specifies the directory where the flag is set or cleared.

File

Specifies the zero-length file where the flag is set or cleared.

9.8.2. Examples
This example shows setting the inherit_jdata flag on a directory. All files created in the directory
or any of its subdirectories will have the jdata flag assigned automatically. Any data written to the
files will be journaled.

gfs_tool setflag inherit_jdata /gfs1/data/

This example shows setting the jdata flag on a file. The file must be zero size. Any data written to
the file will be journaled.

gfs_tool setflag jdata /gfs1/datafile

9.9. Configuring atime Updates
Each file inode and directory inode has three time stamps associated with it:

• ctime — The last time the inode status was changed
• mtime — The last time the file (or directory) data was modified
• atime — The last time the file (or directory) data was accessed

106 Chapter 9. Managing GFS

Note
For more information about ctime, mtime, and atime updates, refer to the stat(2) man page.

If atime updates are enabled as they are by default on GFS and other Linux file systems then every
time a file is read, its inode needs to be updated.
Because few applications use the information provided by atime, those updates can require a signifi-
cant amount of unnecessary write traffic and file-locking traffic. That traffic can degrade performance;
therefore, it may be preferable to turn off atime updates.
Two methods of reducing the effects of atime updating are available:

• Mount with noatime

• Tune GFS atime quantum

9.9.1. Mount with noatime
A standard Linux mount option, noatime, may be specified when the file system is mounted, which
disables atime updates on that file system.

9.9.1.1. Usage

mount -t gfs BlockDevice MountPoint -o noatime

BlockDevice

Specifies the block device where the GFS file system resides.

MountPoint

Specifies the directory where the GFS file system should be mounted.

9.9.1.2. Example
In this example, the GFS file system resides on the pool0 block device and is mounted on directory
/gfs1/ with atime updates turned off.

mount -t gfs /dev/pool/pool0 /gfs1 -o noatime

9.9.2. Tune GFS atime Quantum
When atime updates are enabled, GFS (by default) only updates them once an hour. The time quan-
tum is a tunable parameter that can be adjusted using the gfs_tool command.
Each node in a GFS cluster updates the access time based on the difference between its system time
and the time recorded in the inode. It is required that system clocks of all nodes in a GFS cluster
be in sync. If a node’s system time is out of sync by a significant fraction of the tunable parameter,
atime_quantum, then atime updates are written more frequently. Increasing the frequency of atime
updates may cause performance degradation in clusters with heavy work loads.

Chapter 9. Managing GFS 107

By using the gettune action flag of the gfs_tool command, all current tunable parameters includ-
ing atime_quantum (default is 3600 seconds) are displayed.
The gfs_tool settune command is used to change the atime_quantum parameter value. It must
be set on each node and each time the file system is mounted. (The setting is not persistent across
unmounts.)

9.9.2.1. Usage
Displaying Tunable Parameters

gfs_tool gettune MountPoint

MountPoint

Specifies the directory where the GFS file system is mounted.
Changing the atime_quantum Parameter Value

gfs_tool settune MountPoint atime_quantum Seconds

MountPoint

Specifies the directory where the GFS file system is mounted.

Seconds

Specifies the update period in seconds.

9.9.2.2. Examples
In this example, all GFS tunable parameters for the file system on the mount point /gfs1 are dis-
played.

gfs_tool gettune /gfs1

In this example, the atime update period is set to once a day (86,400 seconds) for the GFS file system
on mount point /gfs1.

gfs_tool settune /gfs1 atime_quantum 86400

9.10. Suspending Activity on a File System
All write activity to a file system can be suspended for a time by using the gfs_tool command’s
freeze action. The unfreeze action returns the file system to its ordinary state. That feature allows
hardware-based device snapshots to be used to capture the file system in a consistent state.

108 Chapter 9. Managing GFS

9.10.1. Usage
Freeze Activity

gfs_tool freeze MountPoint

Unfreeze Activity

gfs_tool unfreeze MountPoint

MountPoint

Specifies the file system to freeze or unfreeze.

9.10.2. Examples
This example freezes file system /gfs.

gfs_tool freeze /gfs

This example unfreezes file system /gfs.

gfs_tool unfreeze /gfs

9.11. Displaying Extended GFS Information and Statistics
A variety of details can be gathered about GFS using the gfs_tool command. Typical usage of the
gfs_tool command is described here.

9.11.1. Usage
Displaying Statistics

gfs_tool counters MountPoint

The counters action flag displays statistics about a file system. If -c is used, the gfs_tool com-
mand continues to run, displaying statistics once per second.
Displaying Space Usage

gfs_tool df MountPoint

The df action flag displays a space-usage summary of a given file system. The information is more
detailed than a standard df.
Displaying Extended Status

gfs_tool stat File

The stat action flag displays extended status information about a file.

MountPoint

Specifies the file system to which the action applies.

Chapter 9. Managing GFS 109

File

Specifies the file from which to get information.
The gfs_tool command provides additional action flags (options) not listed in this section. For more
information about other gfs_tool action flags, refer to the gfs_tool man page.

9.11.2. Examples
This example reports extended file system usage about file system /gfs.

gfs_tool df /gfs

This example reports extended file status about file /gfs/datafile.

gfs_tool stat /gfs/datafile

9.12. Repairing a File System
When nodes fail with the file system mounted, file system journaling allows fast recovery. However, if
a storage device loses power or is physically disconnected, file system corruption may occur. (Journal-
ing cannot be used to recover from storage subsystem failures.) When that type of corruption occurs,
the GFS file system can be recovered by using the gfs_fsck command.
The gfs_fsck command must only be run on a file system that is unmounted from all nodes.

Note
On nodes running Red Hat GFS 6.0 for Red Hat Enterprise Linux 3 Update 5 and later, the gfs_fsck
command has changed from previous releases of Red Hat GFS in the following ways:

• You can no longer set the interactive mode with [Ctrl]-[C]. Pressing [Ctrl]-[C] now cancels the
gfs_fsck command. Do not press [Ctr]-[C] unless you want to cancel the command.

• You can increase the level of verbosity by using the -v flag. Adding a second -v flag increases the
level again.

• You can decrease the level of verbosity by using the -q flag. Adding a second -q flag decreases
the level again.

• The -n option opens a file system as read-only and answers no to any queries automatically.
The option provides a way of trying the command to reveal errors without actually allowing the
gfs_fsck command to take effect.

Refer to the gfs_fsck man page, gfs_fsck(8), for additional information about other command
options.

9.12.1. Usage
gfs_fsck -y BlockDevice

110 Chapter 9. Managing GFS

-y

The -y flag causes all questions to be answered with yes. With the -y specified, the gfs_fsck
does not prompt you for an answer before making changes.

BlockDevice

Specifies the block device where the GFS file system resides.

9.12.2. Example
In this example, the GFS file system residing on block device /dev/pool/pool0 is repaired. All
queries to repair are automatically answered with yes.

gfs_fsck -y /dev/pool/pool0

9.13. Context-Dependent Path Names
Context-Dependent Path Names (CDPNs) allow symbolic links to be created that point to variable
destination files or directories. The variables are resolved to real files or directories each time an
application follows the link. The resolved value of the link depends on the node or user following the
link.
CDPN variables can be used in any path name, not just with symbolic links. However, the CDPN
variable name cannot be combined with other characters to form an actual directory or file name. The
CDPN variable must be used alone as one segment of a complete path.

9.13.1. Usage
For a Normal Symbolic Link

ln -s Target LinkName

Target

Specifies an existing file or directory on a file system.

LinkName

Specifies a name to represent the real file or directory on the other end of the link.
For a Variable Symbolic Link

ln -s Variable LinkName

Variable

Specifies a special reserved name from a list of values (refer to Table 9-5) to represent one of
multiple existing files or directories. This string is not the name of an actual file or directory
itself. (The real files or directories must be created in a separate step using names that correlate
with the type of variable used.)

Chapter 9. Managing GFS 111

LinkName

Specifies a name that will be seen and used by applications and will be followed to get to one of
the multiple real files or directories. When LinkName is followed, the destination depends on
the type of variable and the node or user doing the following.

Variable Description
@hostname This variable resolves to a real file or directory named with the

hostname string produced by the following command entry: echo
‘uname -n‘

@mach This variable resolves to a real file or directory name with the
machine-type string produced by the following command entry: echo
‘uname -m‘

@os This variable resolves to a real file or directory named with the
operating-system name string produced by the following command
entry: echo ‘uname -s‘

@sys This variable resolves to a real file or directory named with the
combined machine type and OS release strings produced by the
following command entry: echo ‘uname -m‘_‘uname -s‘

@uid This variable resolves to a real file or directory named with the user
ID string produced by the following command entry: echo ‘id -u‘

@gid This variable resolves to a real file or directory named with the group
ID string produced by the following command entry: echo ‘id -g‘

Table 9-5. CDPN Variable Values

9.13.2. Example
In this example, there are three nodes with hostnames n01, n02 and n03. Applications on each node
uses directory /gfs/log/, but the administrator wants these directories to be separate for each node.
To do this, no actual log directory is created; instead, a @hostname CDPN link is created with the
name log. Individual directories /gfs/n01/, /gfs/n02/, and /gfs/n03/ are created that will be
the actual directories used when each node references /gfs/log/.

n01# cd /gfs
n01# mkdir n01 n02 n03
n01# ln -s @hostname log

n01# ls -l /gfs
lrwxrwxrwx 1 root root 9 Apr 25 14:04 log -> @hostname/
drwxr-xr-x 2 root root 3864 Apr 25 14:05 n01/
drwxr-xr-x 2 root root 3864 Apr 25 14:06 n02/
drwxr-xr-x 2 root root 3864 Apr 25 14:06 n03/

112 Chapter 9. Managing GFS

n01# touch /gfs/log/fileA
n02# touch /gfs/log/fileB
n03# touch /gfs/log/fileC

n01# ls /gfs/log/
fileA
n02# ls /gfs/log/
fileB
n03# ls /gfs/log/
fileC

9.14. Shutting Down a GFS Cluster
To cleanly shut down a GFS cluster, perform the following steps:

1. Unmount all GFS file systems on all nodes. Refer to Section 9.3 Unmounting a File System for
more information.

2. Shut down all LOCK_GULM servers. Refer to
Section 8.2.5 Shutting Down a LOCK_GULM Server for more
information.

3. Kill the CCS daemon on all nodes.
4. Deactivate all pools on all nodes. Refer to Section 5.6 Activating/Deactivating a Pool Volume

for more information.

Note
You can use GFS init.d scripts included with GFS to shut down nodes in a GFS cluster. For more
information about GFS init.d scripts, refer to Chapter 12 Using GFS init.d Scripts.

9.15. Starting a GFS Cluster
When starting a GFS cluster, perform the following steps.

Note
You can use GFS init.d scripts included with GFS to start nodes in a GFS cluster. For more infor-
mation about GFS init.d scripts, refer to Chapter 12 Using GFS init.d Scripts.

Chapter 9. Managing GFS 113

Note
The GFS kernel modules must be loaded prior to performing these steps. Refer to
Section 3.2.2 Loading the GFS Kernel Modules for more information.

1. At each node, activate pools. Refer to Section 5.6 Activating/Deactivating a Pool Volume for
more information.
Command usage: pool_assemble

2. At each node, start the CCS daemon, specifying the CCA device on at the command line. Refer
to Section 7.2 Starting CCS in the Cluster for more information.
Command usage: ccsd -d CCADevice

3. Start the LOCK_GULM servers. At each lock server node, start lock_gulmd. Refer to
Section 8.2.3 Starting LOCK_GULM Servers for more information.
Command usage: lock_gulmd

4. At each node, mount the GFS file systems. Refer to Section 9.2 Mounting a File System for
more information.
Command usage: mount -t gfs BlockDevice MountPoint

114 Chapter 9. Managing GFS

Chapter 10.
Using the Fencing System
Fencing (or I/O fencing) is the mechanism that disables an errant GFS node’s access to a file system,
preventing the node from causing data corruption. This chapter explains the necessity of fencing,
summarizes how the fencing system works, and describes each form of fencing that can be used in a
GFS cluster. The chapter consists of the following sections:

• Section 10.1 How the Fencing System Works
• Section 10.2 Fencing Methods

10.1. How the Fencing System Works
Fencing consists of two main steps:

• Removal — Cutting an errant node off from contact with the storage
• Recovery — Returning the node safely back into the cluster.
A cluster manager monitors the heartbeat between GFS nodes to determine which nodes are running
properly and which nodes are errant in a GFS cluster. (A cluster manager is part of the LOCK_GULM
server). If a node fails, the cluster manager fences the node, then communicates to the lock manager
and GFS to perform recovery of the failed node.
If a node falls out of contact (losing heartbeat) with the rest of the cluster, the locks it holds and the
corresponding parts of the file system are unavailable to the rest of the nodes in the cluster. Eventually,
that condition may bring the entire cluster to a halt as other nodes require access to those parts of the
file system.
If a node fails, it cannot be permitted to rejoin the cluster while claiming the locks it held when the
node failed. Otherwise, that node could write to a file system where another node — that legitimately
has been issued locks to write to the file system — is writing, therefore corrupting the data. Fencing
prevents a failed node from rejoining a cluster with invalid locks by disabling the path between the
node and the file system storage.
When the cluster manager fences a node, it directs the fencing system to fence the node by name.
The fencing system must read from CCS the appropriate method of fencing the node. Refer to
Chapter 7 Using the Cluster Configuration System for details on how to specify each fencing method
in the CCS configuration files.
Each device or method that can be used to fence nodes is listed in fence.ccs under
fence_devices. Each device specification includes the name of a fencing agent. The fencing agent
is a command that interacts with a specific type of device to disable a specific node. In order to use a
device for fencing, an associated fence agent must exist.

10.2. Fencing Methods
Table 10-1 lists the fencing methods and associated fencing agents that you can use with GFS.

116 Chapter 10. Using the Fencing System

Fending Method Fencing Agent
APC Network Power Switch fence_apc

WTI Network Power Switch fence_wti

Brocade FC Switch fence_brocade

McData FC Switch fence_mcdata

Vixel FC Switch fence_vixel

HP RILOE fence_rib

GNBD fence_gnbd

xCAT fence_xcat

Manual fence_manual

Table 10-1. Fencing Methods and Agents

Warning
Manual fencing should not be used in a production environment. Manual fencing depends on human
intervention whenever a node needs recovery. Cluster operation is halted during the intervention.

When a GFS cluster is operating, the fencing system executes those fencing agents. Specifically, when
using LOCK_GULM, the cluster manager is the master lock_gulmd daemon. The daemon uses the
fence_node command to dispatch a fencing agent.

Note
Contact an authorized Red Hat support representative if there is a device you wish to use for fencing
that is not described in the following sections.

The following sections describe the fencing methods available with GFS.

10.2.1. APC MasterSwitch
APC MasterSwitch power switches are used to power cycle nodes that need to be fenced. The
fencing agent, fence_apc, logs into the device and reboots the specific port for the failed
node. The fence_apc fencing agent supports nodes with dual power supplies plugged into an
APC MasterSwitch. Support for nodes with dual power supplies allows powering down both
power supplies in a node, thereby allowing fencing of nodes with dual power supplies. Refer
to Section 6.6 Creating the fence.ccs File and Section 6.7 Creating the nodes.ccs File for
information on how to configure with this type of fencing.

Note
Lengthy Telnet connections to the APC should be avoided during the cluster operation. A fencing
operation trying to use the APC will be blocked until it can log in.

Chapter 10. Using the Fencing System 117

10.2.2. WTI Network Power Switch
WTI network power switches (NPSs) are used to power cycle nodes that need to be fenced. The
fencing agent, fence_wti, logs into the device and reboots the specific port for the offline node. The
fence_wti fencing agent does not support nodes with dual power supplies plugged into a WTI NPS.
Refer to Section 6.6 Creating the fence.ccs File and Section 6.7 Creating the nodes.ccs File for
information on how to configure with this type of fencing.

Note
Lengthy Telnet connections to the WTI NPS should be avoided during the cluster operation. A fencing
operation trying to use the WTI NPS will be blocked until it can log in.

10.2.3. Brocade FC Switch
A node connected to a Brocade FC (Fibre Channel) switch can be fenced by disabling the switch port
that the node is connected to. The fencing agent, fence_brocade, logs into the switch and disables
the specific port associated with the node.
Nodes with multiple FC paths can have each path disabled. Refer to
Section 6.6 Creating the fence.ccs File and Section 6.7 Creating the nodes.ccs File for
information on how to configure with this type of fencing.

Note
Lengthy Telnet connections to the switch should be avoided during the cluster operation. A fencing
operation trying to use the switch will be blocked until it can log in.

10.2.4. Vixel FC Switch
A node connected to a Vixel FC (Fibre Channel) switch can be fenced by disabling the switch port
that the node is connected to. The fencing agent, fence_vixel, logs into the switch and disables the
specific port associated with the node. Nodes with multiple FC paths can have each path disabled.
Refer to Section 6.6 Creating the fence.ccs File and Section 6.7 Creating the nodes.ccs File for
information on how to configure with this type of fencing.

Note
Lengthy Telnet connections to the switch should be avoided during the cluster operation. A fencing
operation trying to use the switch will be blocked until it can log in.

118 Chapter 10. Using the Fencing System

Caution
Red Hat GFS does not support the following Vixel firmware: Vixel 7xxx series firmware versions 4.0
or later, Vixel 9xxx series firmware versions 6.0 or later.

10.2.5. HP RILOE Card
A GFS node that has an HP RILOE (Remote Insight Lights-Out Edition) card can be fenced
with the fence_rib fencing agent. Refer to Section 6.6 Creating the fence.ccs File and
Section 6.7 Creating the nodes.ccs File for information on how to configure with this type of
fencing.

Note
The fence_rib fencing agent requires the Stunnel software be installed on the system running the
fencing agent. Stunnel is required to connect to the HP RILOE card.

10.2.6. GNBD
Nodes that only use GFS with storage devices via GNBD (Global Network Block Device) servers
can use the fence_gnbd agent. The agent requires no special hardware. The fence_gnbd fencing
agent instructs all GNBD servers to disallow all I/O from a fenced node. When a fenced node is reset
and re-imports the GNBD devices, the GNBD servers again allow the node access to the devices.
Refer to Section 6.6 Creating the fence.ccs File and Section 6.7 Creating the nodes.ccs File for
information on how to configure with this type of fencing.

Note
You must not specify the GNBD fencing agent (fence_gnbd) as a fencing device for GNBD server
nodes (nodes that export GNBDs to GFS nodes).

10.2.7. Manual
In the absence of fencing hardware, a manual fencing method can be used for testing or evaluation
purposes.

Warning
Manual fencing should not be used in a production environment. Manual fencing depends on human
intervention whenever a node needs recovery. Cluster operation is halted during the intervention.

The manual fencing agent, fence_manual, writes a message into the system log of the node on
which the fencing agent is running. The message indicates the cluster node that requires fencing.

Chapter 10. Using the Fencing System 119

Upon seeing this message (by monitoring /var/log/messages or equivalent), an administrator
must manually reset the node specified in the message. After the node is reset, the administrator
must run the command fence_ack_manual to indicate to the system that the failed node has been
reset. Recovery of the reset node will then proceed. Refer to Section 6.6 Creating the fence.ccs File
and Section 6.7 Creating the nodes.ccs File for information on how to configure with this type of
fencing.

10.2.7.1. Usage

fence_ack_manual -s IPAddress

IPAddress

The IP address of the node that was manually reset.

120 Chapter 10. Using the Fencing System

Chapter 11.
Using GNBD
GNBD (Global Network Block Device) provides block-level storage access over an Ethernet LAN.
GNBD components run as a client in a GFS node and as a server in a GNBD server node. A GNBD
server node exports block-level storage from its local storage (either directly attached storage or SAN
storage) to a GFS node.
This chapter describes how to use GNBD with Red Hat GFS and consists of the following sections:

• Section 11.1 GNBD Driver and Command Usage
• Section 11.2 Considerations for Using GNBD Multipath
• Section 11.3 Running GFS on a GNBD Server Node

11.1. GNBD Driver and Command Usage
The Global Network Block Device (GNBD) driver allows a node to export its local storage as a GNBD
over a network so that other nodes on the network can share the storage. Client nodes importing the
GNBD use it like any other block device. Importing a GNBD on multiple clients forms a shared
storage configuration through which GFS can be used.
The GNBD driver is implemented through the following client and server kernel modules.

• gnbd.o — Implements the GNBD device driver on GNBD clients (nodes using GNBD devices).
• gnbd_serv.o — Implements the GNBD server. It allows a node to export local storage over the

network.

Two user commands are available to configure GNBD:

• gnbd_export (for servers) — User program for creating, exporting, and managing GNBDs on a
GNBD server.

• gnbd_import (for clients) — User program for importing and managing GNBDs on a GNBD
client.

11.1.1. Exporting a GNBD from a Server
The gnbd_serv.o kernel module must be loaded on a node before it can export storage as a GNBD.
Once local storage has been identified to be exported, the gnbd_export command is used to export
it.

Caution
When configured for GNBD multipath, a GNBD server (a server that is exporting a GNBD) ignores
Linux page caching. Caching is ignored to ensure data integrity when using GNBD multipath. (By
default, the gnbd_export command exports with caching turned off.)

122 Chapter 11. Using GNBD

Note
A server should not import the GNBDs to use them as a client would. If a server exports the devices
uncached, they may also be used by ccsd and gfs.

11.1.1.1. Usage

gnbd_export -d pathname -e gnbdname [-c]]

pathname

Specifies a storage device to export.

gnbdname

Specifies an arbitrary name selected for the GNBD. It is used as the device name on GNBD
clients. This name must be unique among all GNBDs exported in the network.

-o

Export the device as read-only.

Note
If a GNBD server that is exporting CCS files is also exporting GNBDs in multipath mode, it
must export the CCS files as read-only. Under those circumstances, a GNBD client cannot use
ccs_tool to update its copy of the CCS files. Instead, the CCS files must be updated on a node
where the CCS files are stored locally or on FC-attached storage.

-c

Enable caching. Reads from the exported GNBD and takes advantage of the Linux page cache.
By default, the gnbd_export command does not enable caching.

Caution
For GNBD multipath, you must not specify the -c option. All GNBDs that are part of the pool
must run with caching disabled . Pool, the GFS volume manager, does not check for caching
being disabled; therefore, data corruption will occur if the GNBD devices are run with caching
enabled.

Note
If you have been using GFS 5.2 or earlier and do not want to change your GNBD setup you
should specify the -c option. Before GFS Release 5.2.1, Linux caching was enabled by default
for gnbd_export. If the -c option is not specified, GNBD runs with a noticeable performance
decrease. Also, if the -c option is not specified, the exported GNBD runs in timeout mode,
using the default timeout value (the -t option). For more information about the gnbd_export
command and its options, see the gnbd_export man page.

Chapter 11. Using GNBD 123

11.1.1.2. Examples
This example is for a GNBD server configured with GNBD multipath. It exports device /dev/sdc2
as GNBD gamma. Cache is disabled by default.

gnbd_export -d /dev/sdc2 -e gamma

This example is for a GNBD server not configured with GNBD multipath. It exports device
/dev/sdb2 as GNBD delta with cache enabled.

gnbd_export -d /dev/sdb1 -e delta -c

11.1.2. Importing a GNBD on a Client
The gnbd.o kernel module must be loaded on a node before it can import GNBDs. When GNBDs
are imported, device nodes are created for them in /dev/gnbd/ with the name assigned when they
were exported.

11.1.2.1. Usage

gnbd_import -i Server

Server

Specifies a GNBD server by hostname or IP address from which to import GNBDs. All GNBDs
exported from the server are imported on the client running this command.

11.1.2.2. Example
This example imports all GNBDs from the server named nodeA.

gnbd_import -i nodeA

11.2. Considerations for Using GNBD Multipath
GNBD multipath allows you to configure multiple GNBD server nodes (nodes that export GNBDs to
GFS nodes) with redundant paths between the GNBD server nodes and storage devices. The GNBD
server nodes, in turn, present multiple storage paths to GFS nodes via redundant GNBDs. With GNBD
multipath, if a GNBD server node becomes unavailable, another GNBD server node can provide GFS
nodes with access to storage devices.
If you are using GNBD multipath, you need to take the following into consideration:

• Linux page caching
• Lock server startup
• CCS file location
• Fencing GNBD server nodes

124 Chapter 11. Using GNBD

11.2.1. Linux Page Caching
For GNBD multipath, do not specify Linux page caching (the -c option of the gnbd_export com-
mand). All GNBDs that are part of the pool must run with caching disabled. Data corruption occurs if
the GNBDs are run with caching enabled. Refer to Section 11.1.1 Exporting a GNBD from a Server
for more information about using the gnbd_export command for GNBD multipath.

11.2.2. Lock Server Startup
Lock servers can reside on the following types of nodes: dedicated lock server nodes, GFS nodes,
or GNBD server nodes. In any case, a lock server must be running before the GNBD servers can be
started.

11.2.3. CCS File Location
In a GFS cluster configured for GNBD multipath, the location of CCS files for each node depends on
how a node is deployed. If a node is deployed as a dedicated GFS node, its CCS files can reside on a
GNBD, local storage, or FC-attached storage (if available). If a node is deployed as a dedicated GNBD
server, its CCS files must reside on local storage or FC-attached storage. If a node is deployed as a
dedicated lock server, its CCS files must reside on local storage or FC-attached storage. Because lock
servers need to start before GNBD servers can start, a lock server cannot access CCS files through a
GNBD. If a lock server is running on a GFS node, the CCS files for that node must be located on local
storage or FC-attached storage.
If a GNBD server that is exporting CCS files is also exporting GNBDs in multipath mode, it must
export the CCS files as read-only. (Refer to Section 11.1.1 Exporting a GNBD from a Server for more
information about exporting a GNBD as read-only.) Under those circumstances, a GNBD client cannot
use ccs_tool to update its copy of the CCS files. Instead, the CCS files must be updated on a node
where the CCS files are stored locally or on FC-attached storage.

Note
If FC-attached storage can be shared among nodes, the CCS files can be stored on that shared
storage.

Note
A node with CCS files stored on local storage or FC-attached storage can serve the CCS files to
other nodes in a GFS cluster via ccs_servd. However, doing so would introduce a single point of
failure. For information about ccs_servd, refer to Section 7.5.1 CCA File and Server .

Table 11-1 summarizes where CCS files can be located according to node deployment. For informa-
tion about using CCS, refer to Chapter 7 Using the Cluster Configuration System.

Chapter 11. Using GNBD 125

Node Deployment CCS File Location
GFS dedicated GNBD, local, or FC-attached storage
GFS with lock server Local or FC-attached storage only

GNBD server dedicated Local or FC-attached storage only
GNBD server with lock server Local or FC-attached storage only
Lock server dedicated Local or FC-attached storage only

Table 11-1. CCS File Location for GNBD Multipath Cluster

Before a GNBD client node can activate (using the pool_assemble command) a GNBD-multipath
pool, it must activate the GNBD-exported CCS pool and start ccsd and lock_gulmd. The following
example shows activating an GNBD-exported CCS pool labeled as CCS:

pool_assemble CCS

11.2.4. Fencing GNBD Server Nodes
GNBD server nodes must be fenced using a fencing method that physically removes the nodes from
the network. To physically remove a GNBD server node, you can use any of the following fencing
devices: APC MasterSwitch (fence_apc fence agent), WTI NPS (fence_wti fence agent),
Brocade FC switch (fence_brocade fence agent), McData FC switch (fence_mcdata fence
agent), Vixel FC switch (fence_vixel fence agent), HP RILOE (fence_rib fence agent), or
xCAT (fence_xcat fence agent). You cannot use the GNBD fencing device (fence_gnbd fence
agent) to fence a GNBD server node. For information about configuring fencing for GNBD server
nodes, refer to Chapter 6 Creating the Cluster Configuration System Files.

11.3. Running GFS on a GNBD Server Node
You can run GFS on a GNBD server node, with some restrictions. In addition, running GFS on a
GNBD server node reduces performance. The following restrictions apply when running GFS on a
GNBD server node.

Important
When running GFS on a GNBD server node you must follow the restrictions listed; otherwise, the
GNBD server node will fail.

Note
You may need to increase the timeout period on the exported GNBDs to accommodate reduced
performance. The need to increase the timeout period depends on the quality of the hardware.

126 Chapter 11. Using GNBD

1. A GNBD server node must have local access to all storage devices needed to mount a GFS
file system. The GNBD server node must not import (gnbd_import command) other GNBD
devices to run the file system.

2. The GNBD server must export all the GNBDs in uncached mode, and it must export the raw
devices, not pool devices.

3. GFS must be run on top of a pool device, not raw devices.

Chapter 12.
Using GFS init.d Scripts
This chapter describes GFS init.d scripts and consists of the following sections:

• Section 12.1 GFS init.d Scripts Overview
• Section 12.2 GFS init.d Scripts Use

12.1. GFS init.d Scripts Overview
The GFS init.d scripts start GFS services during node startup and stop GFS services during node
shutdown. Also, the scripts provide functions for querying the status of GFS services (for example, if
a service is running or stopped).
The GFS init.d scripts are stored in the directory /etc/init.d and accept one of the following
parameters: start, stop or status. For example, to start the gfs.o module, call the gfs init.d
script as follows:

/etc/init.d/gfs start

As with other init.d scripts, wrappers are available for using the scripts. For example you can use
service or serviceconf.
GFS provides the following init.d scripts that are installed automatically when GFS is installed:

• pool

• ccsd

• lock_gulmd

• gfs

The scripts automatically start and stop GFS modules during startup and shutdown of a node. When
GFS is installed, the scripts are stored in the /etc/init.d directory. In addition, installation auto-
matically names and places the scripts into directories rc0.d through rc6.d so that the GFS modules
will be started and stopped in the correct order.
If you use the scripts manually to start and shut down GFS modules, you must run the scripts in a
certain order. For startup, follow this sequence: pool, ccsd, lock_gulmd, and gfs. For shutdown,
follow this sequence: gfs, lock_gulmd, ccsd, and pool.
The following example shows running the GFS init.d scripts to start up GFS:

service pool start
service ccsd start
service lock_gulmd start
service gfs start

The following example shows running the GFS init.d scripts to shut down GFS:

service gfs stop
service lock_gulmd stop
service ccsd stop
service pool stop

128 Chapter 12. Using GFS init.d Scripts

12.2. GFS init.d Scripts Use
The following example procedure demonstrates using the GFS init.d scripts to start GFS:

1. Install GFS on each node.
2. Load the pool module:

Note
If you need to specify a persistent major number, edit /etc/modules.conf before loading
pool.o. Refer to Section 3.1.2 Specifying a Persistent Major Number

modprobe pool

or
service pool start

3. Create pool labels.
4. Write the labels to disk.
5. Load the pools. You can use the init.d script to reload or rediscover pool labels as follows:
service pool restart

You have the option of specifying in a configuration file /etc/sysconfig/gfs the pools that
you want assembled. If no pools are specified, then the pool script scans all the devices and
loads any pool that it finds.
To specify the pools on which to operate, the variable POOLS must be set in
/etc/sysconfig/gfs. You can define multiple pools by separating the pool names with a
space, as shown in the following example:
POOLS="trin.cca trin1.gfs"

6. Create the CCS archive.
7. Write the CCS archive to disk or to a file.
8. Modify /etc/sysconfig/gfs to specify the location of the CCS archive by defining the vari-

able CCS_ARCHIVE in /etc/sysconfig/gfs. For example:
CCS_ARCHIVE="/dev/pool/trin.cca"

9. Start ccsd as follows:
service ccsd start

If CCS_ARCHIVE is not defined in /etc/sysconfig/gfs, pool_tool is used to scan for
assembled pools that have CCS archives. If a single archive is found, then that device is auto-
matically used.

10. Start lock_gulmd as follows:
service lock_gulmd start

No additional configuration is required. ccsd needs to be running.
11. Create GFS file systems using the gfs_mkfs command.

Chapter 12. Using GFS init.d Scripts 129

12. Modify /etc/fstab to include GFS file systems. For example, here is part of an /ect/fstab
file that includes the GFS file system trin1.gfs:
/dev/pool/trin1.gfs /gfs gfs defaults 0 0

If you do not want a GFS file system to automatically mount on startup, add noauto to the
options in the /ect/fstab file as follows:
/dev/pool/trin1.gfs /gfs gfs noauto,defaults 0 0

_____________/
|

noauto option

13. Start gfs as follows:
service gfs start

130 Chapter 12. Using GFS init.d Scripts

Appendix A.
Using Red Hat GFS with Red Hat Cluster Suite
This appendix provides information about considerations to take when running Red Hat GFS 6.0 with
Red Hat Cluster Suite and consists of the following sections:

• Section A.1 Terminology
• Section A.2 Changes to Red Hat Cluster
• Section A.3 Installation Scenarios

A.1. Terminology
You may have encountered new terms associated with Red Hat Cluster Suite. The following list pro-
vides a brief description of terms used with Red Hat GFS and Red Hat Cluster Suite:

GFS Setup Druid
This application is a Red Hat Cluster GUI for initial configuration of Red Hat GFS. The GUI is
launched separately from the Red Hat Cluster GUI, the Cluster Configuration Tool. The GFS
Setup Druid uses /etc/cluster.xml as input. If /etc/cluster.xml does not exist, the
GFS Setup Druid displays a message and exits.

Note
You must run the Cluster Configuration Tool before running the GFS Setup Druid; the Cluster
Configuration Tool creates /etc/cluster.xml.

To run the GFS Setup Druid, enter the following at the command line:
redhat-config-gfscluster

gulm-bridge
This is a fence method available for Red Hat Cluster nodes, if and only if the Red Hat GFS RPM
is installed on the node that the Cluster Configuration Tool runs on. The gulm-bridge fence
method has been added to Red Hat Cluster Suite specifically for the Red Hat Enterprise Linux
4 Update 3 release. Using this fence method on a Red Hat Cluster Manager member prevents it
from being fenced twice.

Red Hat Cluster
Red Hat Cluster Manager is part of the Red Hat Cluster Suite. It provides cluster administration
functionality for Red Hat Enterprise Linux 4. Red Hat Cluster Manager contains two major
components:
• Red Hat Cluster Manager — The underlying software (non-GUI) that performs Red Hat

Cluster administrations services.
• Cluster Configuration Tool — This component is the graphical user interface (GUI) for Red

Hat Cluster Manager. The GUI provides a configuration interface and a status monitor for
members and services in a Red Hat Cluster Manager system. The Cluster Configuration
Tool accepts configuration data from a user and writes it to the /etc/cluster.xml file. The
Red Hat Cluster Manager reads the configuration data from the /etc/cluster.xml file.

132 Appendix A. Using Red Hat GFS with Red Hat Cluster Suite

Also, the Cluster Configuration Tool wraps several command line calls into the Red Hat
Cluster Manager, such as starting and stopping services.

A.2. Changes to Red Hat Cluster
The following changes to Red Hat Cluster enable running it with Red Hat GFS in RHEL-U3:

• The Cluster Configuration Tool has been changed. After entering members in the configuration
section of the application, if a member is highlighted, and you click Add Child, a dialog box
is displayed, offering fence method options. You can select a fence method by clicking a radio
button next to the fence method in the dialog box. Earlier Red Hat Cluster releases provided only
two fence method options (under Power Controller Type): Serial and Network. For Red Hat
Enterprise Linux 4 Update 3, if Red Hat GFS is installed on the node, then a third fence-method
option, GULM-STONITH (the gulm-bridge fence method), is available.

• The Red Hat Cluster Manager now provides support for GULM-STONITH, the gulm-bridge
fence method.

• A druid application, the GFS Setup Druid, provides for configuring an initial instance of Red
Hat GFS by writing the three Red Hat GFS configuration files: cluster.ccs, nodes.ccs, and
fence.ccs. The GFS Setup Druid requires an /etc/cluster.xml file when started.

A.3. Installation Scenarios
When running Red Hat GFS with Red Hat Cluster Manager, you must take into account certain con-
siderations, according to the following circumstances:

• New installations of Red Hat GFS and Red Hat Cluster Manager
• Adding Red Hat GFS to an existing Red Hat Cluster Manager deployment
• Upgrading Red Hat GFS 5.2.1 to Red Hat GFS 6.0

A.3.1. New Installations of Red Hat GFS and Red Hat Cluster Manager
When installing Red Hat GFS and Red Hat Cluster Manager for the first time into a cluster, install
and configure Red Hat Cluster Suite before installing and configuring Red Hat GFS. With the Cluster
Configuration Tool, you can configure up to 16 nodes — the maximum number of nodes allowed in
Red Hat Cluster Manager system.
You can add services and failover domains (and other functions) after initially configuring Red Hat
GFS with the GFS Setup Druid.

Note
The only configuration items in Red Hat Cluster that Red Hat GFS or the GFS Setup Druid depend
on are setting up Red Hat Cluster Manager members and specifying fence devices.

Appendix A. Using Red Hat GFS with Red Hat Cluster Suite 133

A.3.2. Adding Red Hat GFS to an Existing Red Hat Cluster Manager
Deployment
Adding Red Hat GFS to an existing Red Hat Cluster Manager deployment requires running the Red
Hat GFS druid application, GFS Setup Druid (also known as redhat-config-gfscluster). As with
the scenario in Section A.3.1 New Installations of Red Hat GFS and Red Hat Cluster Manager , while
Red Hat GFS is scalable up to 300 nodes, a Red Hat Cluster Manager limits the total number of nodes
in a cluster to 16. Therefore, in this scenario, Red Hat GFS scalability is limited. If the 16-node limit
is too small for your deployment, you may want to consider using multiple Red Hat Cluster Manager
clusters.

A.3.3. Upgrading Red Hat GFS 5.2.1 to Red Hat GFS 6.0
To upgrade Red Hat GFS 5.2.1 to Red Hat GFS 6.0, follow the procedures in
Appendix B Upgrading GFS. Running an upgraded version of Red Hat GFS (Red Hat GFS 6.0) with
Red Hat Cluster Manager, requires the following actions:

1. Install and configure Red Hat Cluster Manager.
2. Install and configure Red Hat GFS, configuring the Red Hat GFS CCS files according to the pro-

cedures in Chapter 6 Creating the Cluster Configuration System Files. It is recommended that
you edit the CCS files manually rather than by using the Red Hat Cluster Manager GFS Setup
Druid.

Note
For assistance with installing Red Hat Cluster Manager and performing the Red Hat GFS upgrade in
this scenario, consult with Red Hat Support.

134 Appendix A. Using Red Hat GFS with Red Hat Cluster Suite

Appendix B.
Upgrading GFS
This appendix contains instructions for upgrading GFS 5.2.1 to GFS 6.0 software.

Note
If you are using GFS with Red Hat Cluster, the order in which you upgrade GFS
compared to other Red Hat Cluster installation and configuration tasks may vary.
For information about installing and using GFS with Red Hat Cluster Suite, refer to
Appendix A Using Red Hat GFS with Red Hat Cluster Suite.

To upgrade the software follow these steps:

1. Halt the cluster nodes and the lock servers. The remaining steps require that the GFS cluster be
stopped (all GFS nodes shut down). Stopping the GFS cluster consists of the following actions:

a. Unmount GFS file systems from all nodes.
b. Stop lock servers.
c. Stop ccsd on all nodes.
d. Deactivate pools.
e. Unload kernel modules.

2. Install new software. This step consists of the following actions:
Reference: Chapter 3 Installing GFS

a. Install (or verify that) the Red Hat Enterprise Linux 3 Update 2 kernel (the stock "2.4.21-
15.EL" kernel) is installed.

b. Install perl-Net-Telnet RPM.
c. Install GFS 6.0 RPMs.

3. Load new kernel modules on GFS nodes.
Reference: Chapter 3 Installing GFS
Example:
insmod pool
insmod lock_harness
insmod lock_gulm
insmod gfs

4. (Optional) Modify CCS files.
With the cluster being shut down, if you need to make changes to the Cluster Configuration
System (CCS) files, you have the option of doing that now. In addition, you can remove the
licens.ccs file from the CCA — GFS 6.0 requires no license.ccs file.

136 Appendix B. Upgrading GFS

Note
Although GFS 6.0 requires no license.ccs file, you can safely leave the license file in the
CCA.

Tip
You can use the ccs_tool extract command to extract the Cluster Configuration System
(CCS) files for modification.

5. (Optional) Activate pools on all nodes.
Command usage: pool_assemble -a

Reference: Section 5.6 Activating/Deactivating a Pool Volume
Example:
pool_assemble -a

6. (Optional) Create CCS archive on CCA device. The CCS archive is created from the directory
of new CCS files as described in Step 5.
Command usage: ccs_tool create Directory Device

Reference: Section 7.1 Creating a CCS Archive
Example:
ccs_tool create /root/alpha/ /dev/pool/alpha_cca

7. Start ccsd on all nodes.
This includes all GFS nodes and all nodes that will run the LOCK_GULM server.
Command usage: ccsd -d Device

Reference: Section 7.2 Starting CCS in the Cluster
Example:
ccsd -d /dev/pool/alpha_cca

8. Start LOCK_GULM server.
Start lock_gulmd on all nodes.
Command usage: lock_gulmd
Reference: Section 8.2.3 Starting LOCK_GULM Servers
Example:
lock_gulmd

9. Mount GFS file systems on all GFS nodes.
Command usage: mount -t gfs BlockDevice MountPoint

Reference: Section 9.2 Mounting a File System
Example:
mount -t gfs /dev/pool/pool0 /gfs

Appendix C.
Basic GFS Examples
This appendix contains examples of setting up and using GFS in the following basic scenarios:

• Section C.1 LOCK_GULM, RLM Embedded
• Section C.2 LOCK_GULM, RLM External
• Section C.3 LOCK_GULM, SLM Embedded
• Section C.4 LOCK_GULM, SLM External
• Section C.5 LOCK_GULM, SLM External, and GNBD
• Section C.6 LOCK_NOLOCK
The examples follow the process structure for procedures and associated tasks defined in
Chapter 4 Initial Configuration.

C.1. LOCK_GULM, RLM Embedded
This example sets up a cluster with three nodes and two GFS file systems. It requires three nodes
for the GFS cluster. All nodes in the cluster mount the GFS file system and run the LOCK_GULM
servers.
This section provides the following information about the example:

• Section C.1.1 Key Characteristics
• Section C.1.2 Kernel Modules Loaded
• Section C.1.3 Setup Process

C.1.1. Key Characteristics
This example configuration has the following key characteristics:

• Fencing device — An APC MasterSwitch (single-switch configuration). Refer to Table C-1 for
switch information.

• Number of GFS nodes — 3. Refer to Table C-2 for node information.
• Number of lock server nodes — 3. The lock servers are run on the GFS nodes (embedded). Refer

to Table C-2 for node information.
• Locking protocol — LOCK_GULM. The LOCK_GULM server is run on every node that mounts

GFS.
• Number of shared storage devices — 2. Refer to Table C-3 for storage device information.
• Number of file systems — 2.
• File system names — gfs01 and gfs02.
• File system mounting — Each GFS node mounts the two file systems.
• Cluster name — alpha.

138 Appendix C. Basic GFS Examples

Host Name IP Address Login Name Password
apc 10.0.1.10 apc apc

Table C-1. APC MasterSwitch Information

Host Name IP Address APC Port Number
n01 10.0.1.1 1

n02 10.0.1.2 2
n03 10.0.1.3 3

Table C-2. GFS and Lock Server Node Information

Major Minor #Blocks Name
8 16 8388608 sda
8 17 8001 sda1
8 18 8377897 sda2

8 32 8388608 sdb
8 33 8388608 sdb1

Table C-3. Storage Device Information

Notes
For shared storage devices to be visible to the nodes, it may be necessary to load an appropriate
device driver. If the shared storage devices are not visible on each node, confirm that the device
driver is loaded and that it loaded without errors.
The small partition (/dev/sda1) is used to store the cluster configuration information. The two re-
maining partitions (/dev/sda2, sdb1) are used for the GFS file systems.
You can display the storage device information at each node in your GFS cluster by running the follow-
ing command: cat /proc/partitions. Depending on the hardware configuration of the GFS nodes,
the names of the devices may be different on each node. If the output of the cat /proc/partitions
command shows only entire disk devices (for example, /dev/sda instead of /dev/sda1), then the
storage devices have not been partitioned. To partition a device, use the fdisk command.

C.1.2. Kernel Modules Loaded
Each node must have the following kernel modules loaded:

• gfs.o

• lock_harness.o

• lock_gulm.o

• pool.o

Appendix C. Basic GFS Examples 139

C.1.3. Setup Process
The setup process for this example consists of the following steps:

1. Create pool configurations for the two file systems.
Create pool configuration files for each file system’s pool: pool_gfs01 for the first file system,
and pool_gfs02 for the second file system. The two files should look like the following:
poolname pool_gfs01
subpools 1
subpool 0 0 1
pooldevice 0 0 /dev/sda2

poolname pool_gfs02
subpools 1
subpool 0 0 1
pooldevice 0 0 /dev/sdb1

2. Create a pool configuration for the CCS data.
Create a pool configuration file for the pool that will be used for CCS data. The pool does not
need to be very large. The name of the pool will be alpha_cca. (The name of the cluster,
alpha, followed by _cca). The file should look like the following:
poolname alpha_cca
subpools 1
subpool 0 0 1
pooldevice 0 0 /dev/sda1

3. Use the pool_tool command to create all the pools as follows:
n01# pool_tool -c pool_gfs01.cf pool_gfs02.cf alpha_cca.cf
Pool label written successfully from pool_gfs01.cf
Pool label written successfully from pool_gfs02.cf
Pool label written successfully from alpha_cca.cf

4. Activate the pools on all nodes.

Note
This step must be performed every time a node is rebooted. If it is not, the pool devices will not
be accessible.

Activate the pools using the pool_assemble -a command for each node as follows:
n01# pool_assemble -a <-- Activate pools
alpha_cca assembled
pool_gfs01 assembled
pool_gfs02 assembled

n02# pool_assemble -a <-- Activate pools
alpha_cca assembled
pool_gfs01 assembled
pool_gfs02 assembled

n03# pool_assemble -a <-- Activate pools
alpha_cca assembled
pool_gfs01 assembled
pool_gfs02 assembled

5. Create CCS files.
a. Create a directory called /root/alpha on node n01 as follows:
n01# mkdir /root/alpha
n01# cd /root/alpha

140 Appendix C. Basic GFS Examples

b. Create the cluster.ccs file. This file contains the name of the cluster and the name of
the nodes where the LOCK_GULM server is run. The file should look like the following:
cluster {

name = "alpha"
lock_gulm {

servers = ["n01", "n02", "n03"]
}

}

c. Create the nodes.ccs file. This file contains the name of each node, its IP address, and
node-specific I/O fencing parameters. The file should look like the following:
nodes {

n01 {
ip_interfaces {

eth0 = "10.0.1.1"
}
fence {

power {
apc {
port = 1
}

}
}

}
n02 {

ip_interfaces {
eth0 = "10.0.1.2"

}
fence {

power {
apc {
port = 2
}

}
}

}
n03 {

ip_interfaces {
eth0 = "10.0.1.3"

}
fence {

power {
apc {
port = 3
}

}
}

}
}

Note
If your cluster is running Red Hat GFS 6.0 for Red Hat Enterprise Linux 3 Update 5
and later, you can use the optional usedev parameter to explicitly specify an IP address
rather than relying on an IP address from libresolv. For more information about the
optional usedev parameter, refer to the file format in Figure 6-23 and the example in
Example 6-26. Refer to Table 6-3 for syntax description of the usedev parameter.

d. Create the fence.ccs file. This file contains information required for the fencing
method(s) used by the GFS cluster. The file should look like the following:

Appendix C. Basic GFS Examples 141

fence_devices {
apc {

agent = "fence_apc"
ipaddr = "10.0.1.10"
login = "apc"
passwd = "apc"

}
}

6. Create the CCS Archive on the CCA Device.

Note
This step only needs to be done once and from a single node. It should not be performed every
time the cluster is restarted.

Use the ccs_tool command to create the archive from the CCS configuration files:
n01# ccs_tool create /root/alpha /dev/pool/alpha_cca
Initializing device for first time use... done.

7. Start the CCS daemon (ccsd) on all the nodes.

Note
This step must be performed each time the cluster is rebooted.

The CCA device must be specified when starting ccsd.
n01# ccsd -d /dev/pool/alpha_cca

n02# ccsd -d /dev/pool/alpha_cca

n03# ccsd -d /dev/pool/alpha_cca

8. At each node, start the LOCK_GULM server:
n01# lock_gulmd

n02# lock_gulmd

n03# lock_gulmd

9. Create the GFS file systems.
Create the first file system on pool_gfs01 and the second on pool_gfs02. The names of the
two file systems are gfs01 and gfs02, respectively, as shown in the example:
n01# gfs_mkfs -p lock_gulm -t alpha:gfs01 -j 3 /dev/pool/pool_gfs01
Device: /dev/pool/pool_gfs01
Blocksize: 4096
Filesystem Size:1963216
Journals: 3
Resource Groups:30
Locking Protocol:lock_gulm
Lock Table: alpha:gfs01

Syncing...
All Done

n01# gfs_mkfs -p lock_gulm -t alpha:gfs02 -j 3 /dev/pool/pool_gfs02
Device: /dev/pool/pool_gfs02

142 Appendix C. Basic GFS Examples

Blocksize: 4096
Filesystem Size:1963416
Journals: 3
Resource Groups:30
Locking Protocol:lock_gulm
Lock Table: alpha:gfs02

Syncing...
All Done

10. Mount the GFS file systems on all the nodes.
Mount points /gfs01 and /gfs02 are used on each node:
n01# mount -t gfs /dev/pool/pool_gfs01 /gfs01
n01# mount -t gfs /dev/pool/pool_gfs02 /gfs02

n02# mount -t gfs /dev/pool/pool_gfs01 /gfs01
n02# mount -t gfs /dev/pool/pool_gfs02 /gfs02

n03# mount -t gfs /dev/pool/pool_gfs01 /gfs01
n03# mount -t gfs /dev/pool/pool_gfs02 /gfs02

C.2. LOCK_GULM, RLM External
This example sets up a GFS cluster with three nodes, two GFS file systems, and three lock server nodes
that are external to the GFS nodes. The lock server nodes are dedicated to running LOCK_GULM
only.
This section provides the following information about the example:

• Section C.2.1 Key Characteristics
• Section C.2.2 Kernel Modules Loaded
• Section C.2.3 Setup Process

C.2.1. Key Characteristics
This example configuration has the following key characteristics:

• Fencing device — An APC MasterSwitch (single-switch configuration). Refer to Table C-4 for
switch information.

• Number of GFS nodes — 3. Refer to Table C-5 for node information.
• Number of lock server nodes — 3. The lock server nodes are dedicated to running as lock server

nodes only, and are external to the GFS nodes. Refer to Table C-6 for node information.
• Locking protocol — LOCK_GULM. The LOCK_GULM server is run on each lock server node.
• Number of shared storage devices — 2. Refer to Table C-7 for storage device information.
• Number of file systems — 2.
• File system names — gfs01 and gfs02.
• File system mounting — Each GFS node mounts the two file systems.
• Cluster name — alpha.

Appendix C. Basic GFS Examples 143

Host Name IP Address Login Name Password
apc 10.0.1.10 apc apc

Table C-4. APC MasterSwitch Information

Host Name IP Address APC Port Number
n01 10.0.1.1 1

n02 10.0.1.2 2
n03 10.0.1.3 3

Table C-5. GFS Node Information

Host Name IP Address APC Port Number
lck01 10.0.1.4 4
lck02 10.0.1.5 5
lck03 10.0.1.6 6

Table C-6. Lock Server Node Information

Major Minor #Blocks Name
8 16 8388608 sda
8 17 8001 sda1

8 18 8377897 sda2
8 32 8388608 sdb
8 33 8388608 sdb1

Table C-7. Storage Device Information

Notes
For shared storage devices to be visible to the nodes, it may be necessary to load an appropriate
device driver. If the shared storage devices are not visible on each node, confirm that the device
driver is loaded and that it loaded without errors.
The small partition (/dev/sda1) is used to store the cluster configuration information. The two re-
maining partitions (/dev/sda2, sdb1) are used for the GFS file systems.
You can display the storage device information at each node in your GFS cluster by running the follow-
ing command: cat /proc/partitions. Depending on the hardware configuration of the GFS nodes,
the names of the devices may be different on each node. If the output of the cat /proc/partitions
command shows only entire disk devices (for example, /dev/sda instead of /dev/sda1), then the
storage devices have not been partitioned. To partition a device, use the fdisk command.

144 Appendix C. Basic GFS Examples

C.2.2. Kernel Modules Loaded
Each node must have the following kernel modules loaded:

• gfs.o

• lock_harness.o

• lock_gulm.o

• pool.o

C.2.3. Setup Process
The setup process for this example consists of the following steps:

1. Create pool configurations for the two file systems.
Create pool configuration files for each file system’s pool: pool_gfs01 for the first file system,
and pool_gfs02 for the second file system. The two files should look like the following:
poolname pool_gfs01
subpools 1
subpool 0 0 1
pooldevice 0 0 /dev/sda2

poolname pool_gfs02
subpools 1
subpool 0 0 1
pooldevice 0 0 /dev/sdb1

2. Create a pool configuration for the CCS data.
Create a pool configuration file for the pool that will be used for CCS data. The pool does not
need to be very large. The name of the pool will be alpha_cca. (The name of the cluster,
alpha, followed by _cca). The file should look like the following:
poolname alpha_cca
subpools 1
subpool 0 0 1
pooldevice 0 0 /dev/sda1

3. Use the pool_tool command to create all the pools as follows:
n01# pool_tool -c pool_gfs01.cf pool_gfs02.cf alpha_cca.cf
Pool label written successfully from pool_gfs01.cf
Pool label written successfully from pool_gfs02.cf
Pool label written successfully from alpha_cca.cf

4. Activate the pools on all nodes.

Note
This step must be performed every time a node is rebooted. If it is not, the pool devices will not
be accessible.

Activate the pools using the pool_assemble -a command for each node as follows:
n01# pool_assemble -a <-- Activate pools
alpha_cca assembled
pool_gfs01 assembled
pool_gfs02 assembled

n02# pool_assemble -a <-- Activate pools

Appendix C. Basic GFS Examples 145

alpha_cca assembled
pool_gfs01 assembled
pool_gfs02 assembled

n03# pool_assemble -a <-- Activate pools
alpha_cca assembled
pool_gfs01 assembled
pool_gfs02 assembled

lck01# pool_assemble -a <-- Activate pools
alpha_cca assembled
pool_gfs01 assembled
pool_gfs02 assembled

lck02# pool_assemble -a <-- Activate pools
alpha_cca assembled
pool_gfs01 assembled
pool_gfs02 assembled

lck03# pool_assemble -a <-- Activate pools
alpha_cca assembled
pool_gfs01 assembled
pool_gfs02 assembled

5. Create CCS files.
a. Create a directory called /root/alpha on node n01 as follows:
n01# mkdir /root/alpha
n01# cd /root/alpha

b. Create the cluster.ccs file. This file contains the name of the cluster and the name of
the nodes where the LOCK_GULM server is run. The file should look like the following:
cluster {

name = "alpha"
lock_gulm {

servers = ["lck01", "lck02", "lck03"]
}

}

c. Create the nodes.ccs file. This file contains the name of each node, its IP address, and
node-specific I/O fencing parameters. The file should look like the following:
nodes {

n01 {
ip_interfaces {

eth0 = "10.0.1.1"
}
fence {

power {
apc {
port = 1
}

}
}

}
n02 {

ip_interfaces {
eth0 = "10.0.1.2"

}
fence {

power {
apc {
port = 2
}

146 Appendix C. Basic GFS Examples

}
}

}
n03 {

ip_interfaces {
eth0 = "10.0.1.3"

}
fence {

power {
apc {
port = 3
}

}
}

}

lck01 {
ip_interfaces {

eth0 = "10.0.1.4"
}
fence {

power {
apc {
port = 4
}

}
}

}
lck02 {

ip_interfaces {
eth0 = "10.0.1.5"

}
fence {

power {
apc {
port = 5
}

}
}

}
lck03 {

ip_interfaces {
eth0 = "10.0.1.6"

}
fence {

power {
apc {
port = 6
}

}
}

}
}

Appendix C. Basic GFS Examples 147

Note
If your cluster is running Red Hat GFS 6.0 for Red Hat Enterprise Linux 3 Update 5
and later, you can use the optional usedev parameter to explicitly specify an IP address
rather than relying on an IP address from libresolv. For more information about the
optional usedev parameter, refer to the file format in Figure 6-23 and the example in
Example 6-26. Refer to Table 6-3 for syntax description of the usedev parameter.

d. Create the fence.ccs file. This file contains information required for the fencing
method(s) used by the GFS cluster. The file should look like the following:
fence_devices {

apc {
agent = "fence_apc"
ipaddr = "10.0.1.10"
login = "apc"
passwd = "apc"

}
}

6. Create the CCS Archive on the CCA Device.

Note
This step only needs to be done once and from a single node. It should not be performed every
time the cluster is restarted.

Use the ccs_tool command to create the archive from the CCS configuration files:
n01# ccs_tool create /root/alpha /dev/pool/alpha_cca
Initializing device for first time use... done.

7. Start the CCS daemon (ccsd) on all the nodes.

Note
This step must be performed each time the cluster is rebooted.

The CCA device must be specified when starting ccsd.
n01# ccsd -d /dev/pool/alpha_cca

n02# ccsd -d /dev/pool/alpha_cca

n03# ccsd -d /dev/pool/alpha_cca

lck01# ccsd -d /dev/pool/alpha_cca

lck02# ccsd -d /dev/pool/alpha_cca

lck03# ccsd -d /dev/pool/alpha_cca

8. At each node, start the LOCK_GULM server. For example:
n01# lock_gulmd

lck01# lock_gulmd

148 Appendix C. Basic GFS Examples

9. Create the GFS file systems.
Create the first file system on pool_gfs01 and the second on pool_gfs02. The names of the
two file systems are gfs01 and gfs02 , respectively, as shown in the example:
n01# gfs_mkfs -p lock_gulm -t alpha:gfs01 -j 3 /dev/pool/pool_gfs01
Device: /dev/pool/pool_gfs01
Blocksize: 4096
Filesystem Size:1963216
Journals: 3
Resource Groups:30
Locking Protocol:lock_gulm
Lock Table: alpha:gfs01

Syncing...
All Done

n01# gfs_mkfs -p lock_gulm -t alpha:gfs02 -j 3 /dev/pool/pool_gfs02
Device: /dev/pool/pool_gfs02
Blocksize: 4096
Filesystem Size:1963416
Journals: 3
Resource Groups:30
Locking Protocol:lock_gulm
Lock Table: alpha:gfs02

Syncing...
All Done

10. Mount the GFS file systems on all the nodes.
Mount points /gfs01 and /gfs02 are used on each node:
n01# mount -t gfs /dev/pool/pool_gfs01 /gfs01
n01# mount -t gfs /dev/pool/pool_gfs02 /gfs02

n02# mount -t gfs /dev/pool/pool_gfs01 /gfs01
n02# mount -t gfs /dev/pool/pool_gfs02 /gfs02

n03# mount -t gfs /dev/pool/pool_gfs01 /gfs01
n03# mount -t gfs /dev/pool/pool_gfs02 /gfs02

C.3. LOCK_GULM, SLM Embedded
This example sets up a cluster with three nodes and two GFS file systems. It requires three nodes for
the GFS cluster. One of the nodes in the cluster runs the LOCK_GULM server in addition to mounting
the GFS file system.
This section provides the following information about the example:

• Section C.3.1 Key Characteristics
• Section C.3.2 Kernel Modules Loaded
• Section C.3.3 Setup Process

Appendix C. Basic GFS Examples 149

C.3.1. Key Characteristics
This example configuration has the following key characteristics:

• Fencing device — An APC MasterSwitch (single-switch configuration). Refer to Table C-8 for
switch information.

• Number of GFS nodes — 3. Refer to Table C-9 for node information.
• Number of lock server nodes — 1. The lock server is run on one of the GFS nodes (embedded).

Refer to Table C-9 for node information.
• Locking protocol — LOCK_GULM. The LOCK_GULM server is run on the node that is desig-

nated as a lock server node.
• Number of shared storage devices — 2. Refer to Table C-10 for storage device information.
• Number of file systems — 2.
• File system names — gfs01 and gfs02.
• File system mounting — Each GFS node mounts the two file systems.
• Cluster name — alpha.

Host Name IP Address Login Name Password
apc 10.0.1.10 apc apc

Table C-8. APC MasterSwitch Information

Host Name IP Address APC Port Number
n01 10.0.1.1 1
n02 10.0.1.2 2

n03 10.0.1.3 3
Table C-9. GFS and Lock Server Node Information

Major Minor #Blocks Name
8 16 8388608 sda
8 17 8001 sda1

8 18 8377897 sda2
8 32 8388608 sdb

8 33 8388608 sdb1
Table C-10. Storage Device Information

Notes
For shared storage devices to be visible to the nodes, it may be necessary to load an appropriate
device driver. If the shared storage devices are not visible on each node, confirm that the device

150 Appendix C. Basic GFS Examples

driver is loaded and that it loaded without errors.
The small partition (/dev/sda1) is used to store the cluster configuration information. The two re-
maining partitions (/dev/sda2, sdb1) are used for the GFS file systems.
You can display the storage device information at each node in your GFS cluster by running the follow-
ing command: cat /proc/partitions. Depending on the hardware configuration of the GFS nodes,
the names of the devices may be different on each node. If the output of the cat /proc/partitions
command shows only entire disk devices (for example, /dev/sda instead of /dev/sda1), then the
storage devices have not been partitioned. To partition a device, use the fdisk command.

C.3.2. Kernel Modules Loaded
Each node must have the following kernel modules loaded:

• gfs.o

• lock_harness.o

• lock_gulm.o

• pool.o

C.3.3. Setup Process
The setup process for this example consists of the following steps:

1. Create pool configurations for the two file systems.
Create pool configuration files for each file system’s pool: pool_gfs01 for the first file system,
and pool_gfs02 for the second file system. The two files should look like the following:
poolname pool_gfs01
subpools 1
subpool 0 0 1
pooldevice 0 0 /dev/sda2

poolname pool_gfs02
subpools 1
subpool 0 0 1
pooldevice 0 0 /dev/sdb1

2. Create a pool configuration for the CCS data.
Create a pool configuration file for the pool that will be used for CCS data. The pool does not
need to be very large. The name of the pool will be alpha_cca. (The name of the cluster,
alpha, followed by _cca). The file should look like the following:
poolname alpha_cca
subpools 1
subpool 0 0 1
pooldevice 0 0 /dev/sda1

3. Use the pool_tool command to create all the pools as follows:
n01# pool_tool -c pool_gfs01.cf pool_gfs02.cf alpha_cca.cf
Pool label written successfully from pool_gfs01.cf
Pool label written successfully from pool_gfs02.cf
Pool label written successfully from alpha_cca.cf

4. Activate the pools on all nodes.

Appendix C. Basic GFS Examples 151

Note
This step must be performed every time a node is rebooted. If it is not, the pool devices will not
be accessible.

Activate the pools using the pool_assemble -a command for each node as follows:
n01# pool_assemble -a <-- Activate pools
alpha_cca assembled
pool_gfs01 assembled
pool_gfs02 assembled

n02# pool_assemble -a <-- Activate pools
alpha_cca assembled
pool_gfs01 assembled
pool_gfs02 assembled

n03# pool_assemble -a <-- Activate pools
alpha_cca assembled
pool_gfs01 assembled
pool_gfs02 assembled

5. Create CCS files.
a. Create a directory called /root/alpha on node n01 as follows:
n01# mkdir /root/alpha
n01# cd /root/alpha

b. Create the cluster.ccs file. This file contains the name of the cluster and the name of
the nodes where the LOCK_GULM server is run. The file should look like the following:
cluster {

name = "alpha"
lock_gulm {

servers = ["n01"]
}

}

c. Create the nodes.ccs file. This file contains the name of each node, its IP address, and
node-specific I/O fencing parameters. The file should look like the following:
nodes {

n01 {
ip_interfaces {

eth0 = "10.0.1.1"
}
fence {

power {
apc {
port = 1
}

}
}

}
n02 {

ip_interfaces {
eth0 = "10.0.1.2"

}
fence {

power {
apc {
port = 2
}

}

152 Appendix C. Basic GFS Examples

}
}
n03 {

ip_interfaces {
eth0 = "10.0.1.3"

}
fence {

power {
apc {
port = 3
}

}
}

}
}

Note
If your cluster is running Red Hat GFS 6.0 for Red Hat Enterprise Linux 3 Update 5
and later, you can use the optional usedev parameter to explicitly specify an IP address
rather than relying on an IP address from libresolv. For more information about the
optional usedev parameter, refer to the file format in Figure 6-23 and the example in
Example 6-26. Refer to Table 6-3 for syntax description of the usedev parameter.

d. Create the fence.ccs file. This file contains information required for the fencing
method(s) used by the GFS cluster. The file should look like the following:
fence_devices {

apc {
agent = "fence_apc"
ipaddr = "10.0.1.10"
login = "apc"
passwd = "apc"

}
}

6. Create the CCS Archive on the CCA Device.

Note
This step only needs to be done once and from a single node. It should not be performed every
time the cluster is restarted.

Use the ccs_tool command to create the archive from the CCS configuration files:
n01# ccs_tool create /root/alpha /dev/pool/alpha_cca
Initializing device for first time use... done.

7. Start the CCS daemon (ccsd) on all the nodes.

Appendix C. Basic GFS Examples 153

note
This step must be performed each time the cluster is rebooted.

The CCA device must be specified when starting ccsd.
n01# ccsd -d /dev/pool/alpha_cca

n02# ccsd -d /dev/pool/alpha_cca

n03# ccsd -d /dev/pool/alpha_cca

8. Start the LOCK_GULM server on each node. For example:
n01# lock_gulmd

9. Create the GFS file systems.
Create the first file system on pool_gfs01 and the second on pool_gfs02. The names of the
two file systems are gfs01 and gfs02, respectively, as shown in the example:
n01# gfs_mkfs -p lock_gulm -t alpha:gfs01 -j 3 /dev/pool/pool_gfs01
Device: /dev/pool/pool_gfs01
Blocksize: 4096
Filesystem Size:1963216
Journals: 3
Resource Groups:30
Locking Protocol:lock_gulm
Lock Table: alpha:gfs01

Syncing...
All Done

n01# gfs_mkfs -p lock_gulm -t alpha:gfs02 -j 3 /dev/pool/pool_gfs02
Device: /dev/pool/pool_gfs02
Blocksize: 4096
Filesystem Size:1963416
Journals: 3
Resource Groups:30
Locking Protocol:lock_gulm
Lock Table: alpha:gfs02

Syncing...
All Done

10. Mount the GFS file systems on all the nodes.
Mount points /gfs01 and /gfs02 are used on each node:
n01# mount -t gfs /dev/pool/pool_gfs01 /gfs01
n01# mount -t gfs /dev/pool/pool_gfs02 /gfs02

n02# mount -t gfs /dev/pool/pool_gfs01 /gfs01
n02# mount -t gfs /dev/pool/pool_gfs02 /gfs02

n03# mount -t gfs /dev/pool/pool_gfs01 /gfs01
n03# mount -t gfs /dev/pool/pool_gfs02 /gfs02

154 Appendix C. Basic GFS Examples

C.4. LOCK_GULM, SLM External
This example sets up a cluster with three nodes and two GFS file systems. It requires three nodes for
the GFS cluster and an additional (external) node to run the LOCK_GULM server.
This section provides the following information about the example:

• Section C.4.1 Key Characteristics
• Section C.4.2 Kernel Modules Loaded
• Section C.4.3 Setup Process

C.4.1. Key Characteristics
This example configuration has the following key characteristics:

• Fencing device — An APC MasterSwitch (single-switch configuration). Refer to Table C-11 for
switch information.

• Number of GFS nodes — 3. Refer to Table C-12 for node information.
• Number of lock server nodes — 1. The lock server is run on one of the GFS nodes (embedded).

Refer to Table C-13 for node information.
• Locking protocol — LOCK_GULM. The LOCK_GULM server is run on the node that is desig-

nated as a lock server node.
• Number of shared storage devices — 2. Refer to Table C-14 for storage device information.
• Number of file systems — 2.
• File system names — gfs01 and gfs02.
• File system mounting — Each GFS node mounts the two file systems.
• Cluster name — alpha.

Host Name IP Address Login Name Password
apc 10.0.1.10 apc apc

Table C-11. APC MasterSwitch Information

Host Name IP Address APC Port Number
n01 10.0.1.1 1
n02 10.0.1.2 2

n03 10.0.1.3 3
Table C-12. GFS Node Information

Host Name IP Address APC Port Number
lcksrv 10.0.1.4 4

Table C-13. Lock Server Node Information

Appendix C. Basic GFS Examples 155

Major Minor #Blocks Name
8 16 8388608 sda
8 17 8001 sda1

8 18 8377897 sda2
8 32 8388608 sdb
8 33 8388608 sdb1

Table C-14. Storage Device Information

Notes
For shared storage devices to be visible to the nodes, it may be necessary to load an appropriate
device driver. If the shared storage devices are not visible on each node, confirm that the device
driver is loaded and that it loaded without errors.
The small partition (/dev/sda1) is used to store the cluster configuration information. The two re-
maining partitions (/dev/sda2, sdb1) are used for the GFS file systems.
You can display the storage device information at each node in your GFS cluster by running the follow-
ing command: cat /proc/partitions. Depending on the hardware configuration of the GFS nodes,
the names of the devices may be different on each node. If the output of the cat /proc/partitions
command shows only entire disk devices (for example, /dev/sda instead of /dev/sda1), then the
storage devices have not been partitioned. To partition a device, use the fdisk command.

C.4.2. Kernel Modules Loaded
Each node must have the following kernel modules loaded:

• gfs.o

• lock_harness.o

• lock_gulm.o

• pool.o

C.4.3. Setup Process
The setup process for this example consists of the following steps:

1. Create pool configurations for the two file systems.
Create pool configuration files for each file system’s pool: pool_gfs01 for the first file system,
and pool_gfs02 for the second file system. The two files should look like the following:
poolname pool_gfs01
subpools 1
subpool 0 0 1
pooldevice 0 0 /dev/sda2

poolname pool_gfs02
subpools 1

156 Appendix C. Basic GFS Examples

subpool 0 0 1
pooldevice 0 0 /dev/sdb1

2. Create a pool configuration for the CCS data.
Create a pool configuration file for the pool that will be used for CCS data. The pool does not
need to be very large. The name of the pool will be alpha_cca. (The name of the cluster,
alpha, followed by _cca). The file should look like the following:
poolname alpha_cca
subpools 1
subpool 0 0 1
pooldevice 0 0 /dev/sda1

3. Use the pool_tool command to create all the pools as follows:
n01# pool_tool -c pool_gfs01.cf pool_gfs02.cf alpha_cca.cf
Pool label written successfully from pool_gfs01.cf
Pool label written successfully from pool_gfs02.cf
Pool label written successfully from alpha_cca.cf

4. Activate the pools on all nodes.

Note
This step must be performed every time a node is rebooted. If it is not, the pool devices will not
be accessible.

Activate the pools using the pool_assemble -a command for each node as follows:
n01# pool_assemble -a <-- Activate pools
alpha_cca assembled
pool_gfs01 assembled
pool_gfs02 assembled

n02# pool_assemble -a <-- Activate pools
alpha_cca assembled
pool_gfs01 assembled
pool_gfs02 assembled

n03# pool_assemble -a <-- Activate pools
alpha_cca assembled
pool_gfs01 assembled
pool_gfs02 assembled

lcksrv# pool_assemble -a <-- Activate pools
alpha_cca assembled
pool_gfs01 assembled
pool_gfs02 assembled

5. Create CCS files.
a. Create a directory called /root/alpha on node n01 as follows:
n01# mkdir /root/alpha
n01# cd /root/alpha

b. Create the cluster.ccs file. This file contains the name of the cluster and the name of
the nodes where the LOCK_GULM server is run. The file should look like the following:
cluster {

name = "alpha"
lock_gulm {

servers = ["lcksrv"]
}

}

Appendix C. Basic GFS Examples 157

c. Create the nodes.ccs file. This file contains the name of each node, its IP address, and
node-specific I/O fencing parameters. The file should look like the following:
nodes {

n01 {
ip_interfaces {

eth0 = "10.0.1.1"
}
fence {

power {
apc {
port = 1
}

}
}

}
n02 {

ip_interfaces {
eth0 = "10.0.1.2"

}
fence {

power {
apc {
port = 2
}

}
}

}
n03 {

ip_interfaces {
eth0 = "10.0.1.3"

}
fence {

power {
apc {
port = 3
}

}
}

}
lcksrv {

ip_interfaces {
eth0 = "10.0.1.4"

}
fence {

power {
apc {
port = 4
}

}
}

}
}

158 Appendix C. Basic GFS Examples

Note
If your cluster is running Red Hat GFS 6.0 for Red Hat Enterprise Linux 3 Update 5
and later, you can use the optional usedev parameter to explicitly specify an IP address
rather than relying on an IP address from libresolv. For more information about the
optional usedev parameter, refer to the file format in Figure 6-23 and the example in
Example 6-26. Refer to Table 6-3 for syntax description of the usedev parameter.

d. Create the fence.ccs file. This file contains information required for the fencing
method(s) used by the GFS cluster. The file should look like the following:
fence_devices {

apc {
agent = "fence_apc"
ipaddr = "10.0.1.10"
login = "apc"
passwd = "apc"

}
}

6. Create the CCS Archive on the CCA Device.

Note
This step only needs to be done once and from a single node. It should not be performed every
time the cluster is restarted.

Use the ccs_tool command to create the archive from the CCS configuration files:
n01# ccs_tool create /root/alpha /dev/pool/alpha_cca
Initializing device for first time use... done.

7. Start the CCS daemon (ccsd) on all the nodes.

Note
This step must be performed each time the cluster is rebooted.

The CCA device must be specified when starting ccsd.
n01# ccsd -d /dev/pool/alpha_cca

n02# ccsd -d /dev/pool/alpha_cca

n03# ccsd -d /dev/pool/alpha_cca

lcksrv# ccsd -d /dev/pool/alpha_cca

8. At each node, start the LOCK_GULM server. For example:
n01# lock_gulmd

lcksrv# lock_gulmd

9. Create the GFS file systems.
Create the first file system on pool_gfs01 and the second on pool_gfs02. The names of the
two file systems are gfs01 and gfs02, respectively, as shown in the example:

Appendix C. Basic GFS Examples 159

n01# gfs_mkfs -p lock_gulm -t alpha:gfs01 -j 3 /dev/pool/pool_gfs01
Device: /dev/pool/pool_gfs01
Blocksize: 4096
Filesystem Size:1963216
Journals: 3
Resource Groups:30
Locking Protocol:lock_gulm
Lock Table: alpha:gfs01

Syncing...
All Done

n01# gfs_mkfs -p lock_gulm -t alpha:gfs02 -j 3 /dev/pool/pool_gfs02
Device: /dev/pool/pool_gfs02
Blocksize: 4096
Filesystem Size:1963416
Journals: 3
Resource Groups:30
Locking Protocol:lock_gulm
Lock Table: alpha:gfs02

Syncing...
All Done

10. Mount the GFS file systems on all the nodes.
Mount points /gfs01 and /gfs02 are used on each node:
n01# mount -t gfs /dev/pool/pool_gfs01 /gfs01
n01# mount -t gfs /dev/pool/pool_gfs02 /gfs02

n02# mount -t gfs /dev/pool/pool_gfs01 /gfs01
n02# mount -t gfs /dev/pool/pool_gfs02 /gfs02

n03# mount -t gfs /dev/pool/pool_gfs01 /gfs01
n03# mount -t gfs /dev/pool/pool_gfs02 /gfs02

C.5. LOCK_GULM, SLM External, and GNBD
This example configures a cluster with three GFS nodes and two GFS file systems. It will require three
nodes for the GFS cluster, one node to run a LOCK_GULM server, and another node for a GNBD
server. (A total of five nodes are required in this example.)
This section provides the following information about the example:

• Section C.5.1 Key Characteristics
• Section C.5.2 Kernel Modules Loaded
• Section C.5.3 Setup Process

C.5.1. Key Characteristics
This example configuration has the following key characteristics:

• Fencing device — An APC MasterSwitch (single-switch configuration). Refer to Table C-15 for
switch information.

• Number of GFS nodes — 3. Refer to Table C-16 for node information.

160 Appendix C. Basic GFS Examples

• Number of lock server nodes — 1. The lock server is run on one of the GFS nodes (embedded).
Refer to Table C-17 for node information.

• Number of GNBD server nodes — 1. Refer to Table C-18 for node information.
• Locking protocol — LOCK_GULM. The LOCK_GULM server is run on a node (the lock server

node) that is not mounting GFS but is dedicated as a LOCK_GULM server.
• Number of shared storage devices — 2. GNBD will be used as the transport layer for the storage

devices. Refer to Table C-19 for storage device information.
• Number of file systems — 2.
• File system names — gfs01 and gfs02.
• File system mounting — Each GFS node mounts the two file systems.
• Cluster name — alpha.

Host Name IP Address Login Name Password
apc 10.0.1.10 apc apc

Table C-15. APC MasterSwitch Information

Host Name IP Address APC Port Number
n01 10.0.1.1 1
n02 10.0.1.2 2
n03 10.0.1.3 3

Table C-16. GFS Node Information

Host Name IP Address APC Port Number
lcksrv 10.0.1.4 4

Table C-17. Lock Server Node Information

Host Name IP Address APC Port Number
gnbdsrv 10.0.1.5 5

Table C-18. GNBD Server Node Information

Appendix C. Basic GFS Examples 161

Major Minor #Blocks Name
8 16 8388608 sda
8 17 8001 sda1

8 18 8377897 sda2
8 32 8388608 sdb
8 33 8388608 sdb1

Table C-19. Storage Device Information

Notes
The storage must only be visible on the GNBD server node. The GNBD server node will ensure that
the storage is visible to the GFS cluster nodes via the GNBD protocol.
For shared storage devices to be visible to the nodes, it may be necessary to load an appropriate
device driver. If the shared storage devices are not visible on each node, confirm that the device
driver is loaded and that it loaded without errors.
The small partition (/dev/sda1) is used to store the cluster configuration information. The two re-
maining partitions (/dev/sda2, sdb1) are used for the GFS file systems.
You can display the storage device information at each node in your GFS cluster by running the follow-
ing command: cat /proc/partitions. Depending on the hardware configuration of the GFS nodes,
the names of the devices may be different on each node. If the output of the cat /proc/partitions
command shows only entire disk devices (for example, /dev/sda instead of /dev/sda1), then the
storage devices have not been partitioned. To partition a device, use the fdisk command.

C.5.2. Kernel Modules Loaded
Each node must have the following kernel modules loaded:

• gfs.o

• gnbd.o

• lock_harness.o

• lock_gulm.o

• pool.o

C.5.3. Setup Process
The setup process for this example consists of the following steps:

1. Create and export GNBD devices.
Create and export a GNBD device for the storage on the GNBD server (gnbdsrv) to be used
for the GFS file systems and CCA device. In the following example, gfs01 is the GNBD device
used for the pool of the first GFS file system, gfs02 is the device used for the pool of the second
GFS file system, and cca is the device used for the CCA device.

162 Appendix C. Basic GFS Examples

gnbdsrv# gnbd_export -e cca -d /dev/sda1 -c
gnbdsrv# gnbd_export -e gfs01 -d /dev/sda2 -c
gnbdsrv# gnbd_export -e gfs02 -d /dev/sdb1 -c

Caution
The GNBD server should not attempt to use the cached devices it exports — either directly or
by importing them. Doing so can cause cache coherency problems.

2. Import GNBD devices on all GFS nodes and the lock server node.
Use gnbd_import to import the GNBD devices from the GNBD server (gnbdsrv):
n01# gnbd_import -i gnbdsrv
n02# gnbd_import -i gnbdsrv
n03# gnbd_import -i gnbdsrv
lcksrv# gnbd_import -i gnbdsrv

3. Create pool configurations for the two file systems.
Create pool configuration files for each file system’s pool: pool_gfs01 for the first file system,
and pool_gfs02 for the second file system. The two files should look like the following:
poolname pool_gfs01
subpools 1
subpool 0 0 1
pooldevice 0 0 /dev/gnbd/gfs01

poolname pool_gfs02
subpools 1
subpool 0 0 1
pooldevice 0 0 /dev/gnbd/gfs02

4. Create a pool configuration for the CCS data.
Create a pool configuration file for the pool that will be used for CCS data. The pool does not
need to be very large. The name of the pool will be alpha_cca. (The name of the cluster,
alpha, followed by _cca). The file should look like the following:
poolname alpha_cca
subpools 1
subpool 0 0 1
pooldevice 0 0 /dev/gnbd/cca

5. Create the pools using the pool_tool command.

Note
This operation must take place on a GNBD client node.

Use the pool_tool command to create all the pools as follows:
n01# pool_tool -c pool_gfs01.cf pool_gfs02.cf alpha_cca.cf
Pool label written successfully from pool_gfs01.cf
Pool label written successfully from pool_gfs02.cf
Pool label written successfully from alpha_cca.cf

6. Activate the pools on all nodes.

Appendix C. Basic GFS Examples 163

Note
This step must be performed every time a node is rebooted. If it is not, the pool devices will not
be accessible.

Activate the pools using the pool_assemble -a command for each node as follows:
n01# pool_assemble -a <-- Activate pools
alpha_cca assembled
pool_gfs01 assembled
pool_gfs02 assembled

n02# pool_assemble -a <-- Activate pools
alpha_cca assembled
pool_gfs01 assembled
pool_gfs02 assembled

n03# pool_assemble -a <-- Activate pools
alpha_cca assembled
pool_gfs01 assembled
pool_gfs02 assembled

lcksrv# pool_assemble -a <-- Activate pools
alpha_cca assembled
pool_gfs01 assembled
pool_gfs02 assembled

7. Create CCS files.
a. Create a directory called /root/alpha on node n01 as follows:
n01# mkdir /root/alpha
n01# cd /root/alpha

b. Create the cluster.ccs file. This file contains the name of the cluster and the name of
the nodes where the LOCK_GULM server is run. The file should look like the following:
cluster {

name = "alpha"
lock_gulm {

servers = ["lcksrv"]
}

}

c. Create the nodes.ccs file. This file contains the name of each node, its IP address, and
node-specific I/O fencing parameters. The file should look like the following:
nodes {

n01 {
ip_interfaces {

eth0 = "10.0.1.1"
}
fence {

power {
apc {
port = 1
}

}
}

}
n02 {

ip_interfaces {
eth0 = "10.0.1.2"

}
fence {

164 Appendix C. Basic GFS Examples

power {
apc {
port = 2
}

}
}

}
n03 {

ip_interfaces {
eth0 = "10.0.1.3"

}
fence {

power {
apc {
port = 3
}

}
}

}
lcksrv {

ip_interfaces {
eth0 = "10.0.1.4"

}
fence {

power {
apc {
port = 4
}

}
}

}
gnbdsrv {

ip_interfaces {
eth0 = "10.0.1.5"

}
fence {

power {
apc {
port = 5
}

}
}

}
}

Note
If your cluster is running Red Hat GFS 6.0 for Red Hat Enterprise Linux 3 Update 5
and later, you can use the optional usedev parameter to explicitly specify an IP address
rather than relying on an IP address from libresolv. For more information about the
optional usedev parameter, refer to the file format in Figure 6-23 and the example in
Example 6-26. Refer to Table 6-3 for syntax description of the usedev parameter.

d. Create the fence.ccs file. This file contains information required for the fencing
method(s) used by the GFS cluster. The file should look like the following:

Appendix C. Basic GFS Examples 165

fence_devices {
apc {

agent = "fence_apc"
ipaddr = "10.0.1.10"
login = "apc"
passwd = "apc"

}
}

8. Create the CCS Archive on the CCA Device.

Note
This step only needs to be done once and from a single node. It should not be performed every
time the cluster is restarted.

Use the ccs_tool command to create the archive from the CCS configuration files:
n01# ccs_tool create /root/alpha /dev/pool/alpha_cca
Initializing device for first time use... done.

9. Start the CCS daemon (ccsd) on all the nodes.

Note
This step must be performed each time the cluster is rebooted.

The CCA device must be specified when starting ccsd.
n01# ccsd -d /dev/pool/alpha_cca

n02# ccsd -d /dev/pool/alpha_cca

n03# ccsd -d /dev/pool/alpha_cca

lcksrv# ccsd -d /dev/pool/alpha_cca

10. At each node, start the LOCK_GULM server. For example:
n01# lock_gulmd

lcksrv# lock_gulmd

11. Create the GFS file systems.
Create the first file system on pool_gfs01 and the second on pool_gfs02. The names of the
two file systems are gfs01 and gfs02, respectively, as shown in the example:
n01# gfs_mkfs -p lock_gulm -t alpha:gfs01 -j 3 /dev/pool/pool_gfs01
Device: /dev/pool/pool_gfs01
Blocksize: 4096
Filesystem Size:1963216
Journals: 3
Resource Groups:30
Locking Protocol:lock_gulm
Lock Table: alpha:gfs01

Syncing...
All Done

n01# gfs_mkfs -p lock_gulm -t alpha:gfs02 -j 3 /dev/pool/pool_gfs02
Device: /dev/pool/pool_gfs02

166 Appendix C. Basic GFS Examples

Blocksize: 4096
Filesystem Size:1963416
Journals: 3
Resource Groups:30
Locking Protocol:lock_gulm
Lock Table: alpha:gfs02

Syncing...
All Done

12. Mount the GFS file systems on all the nodes.
Mount points /gfs01 and /gfs02 are used on each node:
n01# mount -t gfs /dev/pool/pool_gfs01 /gfs01
n01# mount -t gfs /dev/pool/pool_gfs02 /gfs02

n02# mount -t gfs /dev/pool/pool_gfs01 /gfs01
n02# mount -t gfs /dev/pool/pool_gfs02 /gfs02

n03# mount -t gfs /dev/pool/pool_gfs01 /gfs01
n03# mount -t gfs /dev/pool/pool_gfs02 /gfs02

C.6. LOCK_NOLOCK
This example sets up a single node mounting two GFS file systems. Only a single node is required
because the file system will not be mounted in cluster mode.
This section provides the following information about the example:

• Section C.6.1 Key Characteristics
• Section C.6.2 Kernel Modules Loaded
• Section C.6.3 Setup Process

C.6.1. Key Characteristics
This example configuration has the following key characteristics:

• Number of GFS nodes — 1. Refer to Table C-20 for node information.
• Locking protocol — LOCK_NOLOCK.
• Number of shared storage devices — 1. One direct-attached storage device is used. Refer to

Table C-21for storage device information.
• Number of file systems — 2.
• File system names — gfs01 and gfs02.
• File system mounting — The GFS node mounts the two file systems.

Host Name IP Address
n01 10.0.1.1

Table C-20. GFS Node Information

Appendix C. Basic GFS Examples 167

Major Minor #Blocks Name
8 16 8388608 sda
8 17 8001 sda1

8 32 8388608 sdb
8 33 8388608 sdb1

Table C-21. Storage Device Information

Notes
For storage to be visible to the node, it may be necessary to load an appropriate device driver. If the
storage is not visible on the node, confirm that the device driver is loaded and that it loaded without
errors.
The two partitions (/dev/sda1, sdb1) are used for the GFS file systems.
You can display the storage device information at each node in your GFS cluster by running the follow-
ing command: cat /proc/partitions. Depending on the hardware configuration of the GFS nodes,
the names of the devices may be different on each node. If the output of the cat /proc/partitions
command shows only entire disk devices (for example, /dev/sda instead of /dev/sda1), then the
storage devices have not been partitioned. To partition a device, use the fdisk command.

C.6.2. Kernel Modules Loaded
Each node must have the following kernel modules loaded:

• gfs.o

• lock_harness.o

• lock_nolock.o

• pool.o

C.6.3. Setup Process
The setup process for this example consists of the following steps:

1. Create pool configurations for the two file systems.
Create pool configuration files for each file system’s pool: pool_gfs01 for the first file system,
and pool_gfs02 for the second file system. The two files should look like the following:
poolname pool_gfs01
subpools 1
subpool 0 0 1
pooldevice 0 0 /dev/sda1

poolname pool_gfs02
subpools 1
subpool 0 0 1
pooldevice 0 0 /dev/sdb1

2. Use the pool_tool command to create all the pools as follows:

168 Appendix C. Basic GFS Examples

n01# pool_tool -c pool_gfs01.cf pool_gfs02.cf
Pool label written successfully from pool_gfs01.cf
Pool label written successfully from pool_gfs02.cf

3. Activate the pools.

Note
This step must be performed every time a node is rebooted. If it is not, the pool devices will not
be accessible.

Activate the pools using the pool_assemble -a command as follows:
n01# pool_assemble -a
pool_gfs01 assembled
pool_gfs02 assembled

4. Create the CCS Archive.
a. Create a directory called /root/alpha on node n01 as follows:
n01# mkdir /root/alpha
n01# cd /root/alpha

b. Create the CCS Archive on the CCA Device.

Note
This step only needs to be done once. It should not be performed every time the cluster
is restarted.

Use the ccs_tool command to create the archive from the CCS configuration files:
n01# ccs_tool create /root/alpha /root/alpha_cca
Initializing device for first time use... done.

5. Start the CCS daemon (ccsd).

Note
This step must be performed each time the node is rebooted.

The CCA device must be specified when starting ccsd.
n01# ccsd -d /dev/pool/alpha_cca

6. Create the GFS file systems.
Create the first file system on pool_gfs01 and the second on pool_gfs02. The names of the
two file systems are gfs01 and gfs02, respectively, as shown in the example:
n01# gfs_mkfs -p lock_gulm -t alpha:gfs01 -j 1 /dev/pool/pool_gfs01
Device: /dev/pool/pool_gfs01
Blocksize: 4096
Filesystem Size:1963216
Journals: 1
Resource Groups:30
Locking Protocol:lock_nolock
Lock Table:

Syncing...

Appendix C. Basic GFS Examples 169

All Done

n01# gfs_mkfs -p lock_gulm -t alpha:gfs02 -j 1 /dev/pool/pool_gfs02
Device: /dev/pool/pool_gfs02
Blocksize: 4096
Filesystem Size:1963416
Journals: 1
Resource Groups:30
Locking Protocol:lock_nolock
Lock Table:

Syncing...
All Done

7. Mount the GFS file systems on the nodes.
Mount points /gfs01 and /gfs02 are used on the node:
n01# mount -t gfs /dev/pool/pool_gfs01 /gfs01

n01# mount -t gfs /dev/pool/pool_gfs02 /gfs02

170 Appendix C. Basic GFS Examples

Index

A
activating your subscription, iv
adding journals to a file system, 101
administrative options, 77

comparing CCS configuration files to a CCS
archive, 78
extracting files from a CCS archive, 77
listing files in a CCS archive, 78

APC MasterSwitch information (examples) table,
137, 142, 149, 154, 160
atime, configuring updates, 105

mounting with noatime, 106
tuning atime quantum, 106

audience, i

B
block devices

checking before creating pool configuration file, 25
scanning for, 25

C
CCA

CCA file and server
alternative methods to using a CCA device, 79
creating a CCA file, 80
starting the CCS daemon, 81
starting the CCS server, 80

local CCA files
alternative methods to using a CCA device, 82

CCS archive
creating, 75

CCS file location for GNBD multipath cluster table,
125
CDPN variable values table, 111
cluster configuration management, 6
cluster configuration system (CCS)

administrative options, using, 77
comparing CCS configuration files to a CCS
archive, 78
extracting files from a CCS archive, 77
listing files in a CCS archive, 78

alternative methods to using a CCA device, 79
CCA file and server, 79
local CCA files, 82

changing CCS configuration files, 79
combining CCS methods, 82
creating a CCS archive, 75
starting CCS in the cluster, 76

using, 75
using clustering and locking systems, 85

fencing and LOCK_GULM, 86
locking system overview, 85
LOCK_GULM, 85
LOCK_NOLOCK, 87
number of LOCK_GULM servers, 86
selection of LOCK_GULM servers, 85
shutting down a LOCK_GULM server, 86
starting LOCK_GULM servers, 86

Cluster Configuration System Files
(see system files)

Cluster Configuration System, setting up and starting
configuration, initial, 19

cluster management, fencing, recovery, 6
cluster volume management, 5
cluster.ccs, 39
cluster.ccs variables table, 40
clustering, starting

configuration, initial, 19
configuration file

creating for a new volume, 26
examples (config file), 27

configuration, before, 9
configuration, initial, 17

initial tasks, 17
Cluster Configuration System, setting up and
starting, 19
file systems, setting up and mounting, 19
logical devices, setting up, 18
starting clustering and locking systems, 19

prerequisite tasks, 17
console access

system requirements, 12
conventions

document, i

D
data journaling, 104
direct I/O, 103

directory attribute, 104
file attribute, 103
O_DIRECT, 103

displaying extended GFS information and statistics,
108
dual power

multipath FC fencing, 38

172

E
examples

basic GFS examples, 137
LOCK_GULM, RLM embedded, 137

key characteristics, 137
setup process, 139

LOCK_GULM, RLM external, 142
key characteristics, 142
setup process, 144

LOCK_GULM, SLM embedded, 148
key characteristics, 149, 154
setup process, 150, 155

LOCK_GULM, SLM embedded, and GNBD
key characteristics, 159

LOCK_GULM, SLM external, 154
LOCK_GULM, SLM external, and GNBD, 159

setup process, 161
LOCK_NOLOCK, 166

key characteristics, 166
setup process, 167

F
features, new and changed, 1
feedback, iv
fence.ccs, 41
fence.css variables table, 47
fencing, 115

fencing methods, 115
APC MasterSwitch, 116
Brocade FC switch, 117
GNBD, 118
HP RILOE card, 118
manual, 118
Vixel FC switch, 117
WTI network power switch, 117

how the fencing system works, 115
fencing methods and agents table, 116
fibre channel network requirements table, 12
fibre channel storage device requirements table, 12
fibre channel storage devices

system requirements, 12
fibre channel storage network

system requirements, 11
file system

adding journals, 101
atime, configuring updates, 105

mounting with noatime, 106
tuning atime quantum, 106

context-dependent path names (CDPNs), 110
data journaling, 104
direct I/O, 103

directory attribute, 104
file attribute, 103
O_DIRECT, 103

growing, 99
making, 89
mounting, 91
quota management, 94

disabling/enabling quota accounting, 98
disabling/enabling quota enforcement, 98
displaying quota limits, 95
setting quotas, 94
synchronizing quotas, 97

repairing, 109
suspending activity, 107
unmounting, 93

file systems, setting up and mounting
configuration, initial, 19

G
GFS

atime, configuring updates, 105
mounting with noatime, 106
tuning atime quantum, 106

direct I/O, 103
directory attribute, 104
file attribute, 103
O_DIRECT, 103

displaying extended information and statistics, 108
managing, 89
quota management, 94

disabling/enabling quota accounting, 98
disabling/enabling quota enforcement, 98
displaying quota limits, 95
setting quotas, 94
synchronizing quotas, 97

shutting down a cluster, 112
starting a cluster, 112
upgrading

(see upgrading GFS)
GFS and lock server node information (examples) ta-
ble, 138, 149
GFS functions, 5

cluster configuration management, 6
cluster management, fencing, recovery, 6
cluster volume management, 5
lock management, 6

GFS kernel modules, loading
installation tasks, 15

GFS node information (examples) table, 143, 154,
160, 166
GFS RPM installation

installation tasks, 15
GFS software subsystem components table, 7
GFS software subsystems, 7
GFS-specific options for adding journals table, 102
GFS-specific options for expanding file systems table,
101

173

gfs_mkfs command options table, 90
GNBD

driver and command usage, 121
exporting from a server, 121
importing on a client, 123

using, 121
using GFS on a GNBD server node, 125
using GNBD multipath, 123

CCS file location, 124
fencing GNBD server nodes, 125
Linux page caching, 124
lock server startup, 124

GNBD multipath, 38
GNBD server node information (examples) table, 160
growing a file system, 99

I
I/O fencing

(see fencing)
system requirements, 12

init.d
usage, 128
using GFS init.d scripts, 127

init.d scripts
using, 127

initial tasks
Cluster Configuration System, setting up and start-
ing, 19
configuration, initial, 17
file systems, setting up and mounting, 19
logical devices, setting up, 18
starting clustering and locking systems, 19

installation tasks, 14
GFS kernel modules, loading, 15
GFS RPM installation, 15

installing system software, 13
installation tasks, 14

GFS RPM installation, 15
loading GFS kernel modules, 15

prerequisite tasks, 13
clock synchronization software, 14
perl-Net-Telnet module, 13
persistent major number utility, 14
stunnel utility, 14

introduction, i
audience, i
references, v

L
lock management, 6
lock server node information (examples) table, 143,
154, 160
locking system

LOCK_GULM, 85
fencing, 86

LOCK_GULM severs
number of, 86
selection of, 85
shutting down, 86
starting, 86

LOCK_NOLOCK, 87
overview, 85
using, 85

locking systems
configuration, initial, 19

logical devices, setting up
configuration, initial, 18

M
making a file system, 89
managing GFS, 89
mount table, 93
mounting a file system, 91

N
network power switches

system requirements, 12
nodes.ccs, 51
nodes.css variables table, 64

O
overview, 1

configuration, before, 9
economy, 2
features, new and changed, 1
GFS functions, 5

cluster configuration management, 6
cluster management, fencing, recovery, 6
cluster volume management, 5
lock management, 6

GFS software subsystems, 7
performance, 2
scalability, 2

174

P
path names, context-dependent (CDPNs), 110
platform

system requirements, 11
platform requirements table, 11
pool configuration

displaying information, 30
pool configuration file keyword and variable descrip-
tions table, 26
pool management

commands, 22
pool_assemble, 23
pool_info, 23
pool_mp, 24
pool_tool, 22

pool volume, 21
activating, 28
adjusting multipathing, 36
creating, 28
deactivating, 28
displaying information, 34
erasing, 32
examples (activate/deactivate), 29
examples (displaying configuration file informa-
tion), 30
growing, 30
minor number, changing, 33
overview, 21
renaming, 32
statistics, 35

Pool Volume Manager
configuration file

key words and variable descriptions, 26
using, 21

pool_assemble command functions table, 23
pool_assemble command options table, 23
pool_info command functions table, 23
pool_info command options table, 24
pool_mp command functions table, 24
pool_mp command options table, 24
pool_tool command functions table, 22
pool_tool command options table, 22
preface

(see introduction)
prerequisite tasks

configuration, initial, 17
installing system software, 13

clock synchronization software, 14
perl-Net-Telnet module, 13
persistent major number, 14
stunnel utility, 14

Q
quota management, 94

disabling/enabling quota accounting, 98
disabling/enabling quota enforcement, 98
displaying quota limits, 95
setting quotas, 94
synchronizing quotas, 97

R
recommended references table, v
Red Hat GFS with Red Hat Cluster Suite

changes to Red Hat Cluster Suite, 132
installation scenarios, 132
terminology, 131
using, 131

references, recommended, v
registering your subscription, iv
repairing a file system, 109

S
shutting down a GFS cluster, 112
software, installing, 13
starting a GFS cluster, 112
storage device information (examples) table, 138,
143, 149, 155, 161, 167
subscription registration, iv
suspending activity on a file system, 107
system files

CCS file creation tasks, 38
cluster.ccs, 39
creating, 37
dual power, 38
fence.ccs, 41
GNBD multipath, 38
multipath FC fencing, 38
nodes.ccs, 51
prerequisite tasks, 37

system requirements, 11
console access, 12
fibre channel storage devices, 12
fibre channel storage network, 11
I/O fencing, 12
network power switches, 12
platform, 11
TCP/IP network, 11

175

T
tables

APC MasterSwitch information (examples), 137,
142, 149, 154, 160
CCS file location for GNBD multipath cluster, 125
CDPN variable values, 111
cluster.ccs variables, 40
fence.css variables, 47
fencing methods and agents, 116
fibre channel network requirements, 12
fibre channel storage device requirements, 12
GFS and lock server node information (examples),
138, 149
GFS node information (examples), 143, 154, 160,
166
GFS software subsystem components, 7
GFS-specific options for adding journals, 102
GFS-specific options for expanding file systems,
101
gfs_mkfs command options, 90
GNBD server node information (examples), 160
lock server node information (examples), 143, 154,
160
mount options, 93
nodes.css variables, 64
platform requirements, 11
pool configuration file keyword and variable de-
scriptions, 26
pool_assemble command functions, 23
pool_assemble command options, 23
pool_info command functions, 23
pool_info command options, 24
pool_mp command functions, 24
pool_mp command options, 24
pool_tool command functions, 22
pool_tool command options, 22
recommended references, v
storage device information (examples), 138, 143,
149, 155, 161, 167

TCP/IP network
system requirements, 11

U
unmounting a file system, 93
upgrading GFS, 135

upgrade procedure, 135
using Red Hat GFS with Red Hat Cluster Suite, 131

V
volume, new

checking for block devices before creating pool
configuration file, 25
creating a configuration file, 26

Colophon
The manuals are written in DocBook SGML v4.1 format. The HTML and PDF formats are produced
using custom DSSSL stylesheets and custom jade wrapper scripts. The DocBook SGML files are
written in Emacs with the help of PSGML mode.
Garrett LeSage created the admonition graphics (note, tip, important, caution, and warning). They
may be freely redistributed with the Red Hat documentation.
The Red Hat Product Documentation Team consists of the following people:
Sandra A. Moore — Primary Writer/Maintainer of the Red Hat Enterprise Linux Installation Guide
for x86, Itanium™, AMD64, and Intel® Extended Memory 64 Technology (Intel® EM64T); Primary
Writer/Maintainer of the Red Hat Enterprise Linux Installation Guide for the IBM® POWER Archi-
tecture; Primary Writer/Maintainer of the Red Hat Enterprise Linux Installation Guide for the IBM®
S/390® and IBM® eServer™ zSeries® Architectures
John Ha — Primary Writer/Maintainer of the Red Hat Cluster Suite Configuring and Managing a
Cluster; Co-writer/Co-maintainer of the Red Hat Enterprise Linux Security Guide; Maintainer of
custom DocBook stylesheets and scripts
Edward C. Bailey — Primary Writer/Maintainer of the Red Hat Enterprise Linux Introduction to Sys-
tem Administration; Primary Writer/Maintainer of the Release Notes; Contributing Writer to the Red
Hat Enterprise Linux Installation Guide for x86, Itanium™, AMD64, and Intel® Extended Memory
64 Technology (Intel® EM64T)
Karsten Wade — Primary Writer/Maintainer of the Red Hat SELinux Application Development Guide;
Primary Writer/Maintainer of the Red Hat SELinux Policy Writing Guide
Andrius Benokraitis — Primary Writer/Maintainer of the Red Hat Enterprise Linux Reference Guide;
Co-writer/Co-maintainer of the Red Hat Enterprise Linux Security Guide; Contributing Writer to the
Red Hat Enterprise Linux System Administration Guide
Paul Kennedy — Primary Writer/Maintainer of the Red Hat GFS Administrator’s Guide; Contributing
Writer to the Red Hat Cluster Suite Configuring and Managing a Cluster
Mark Johnson — Primary Writer/Maintainer of the Red Hat Enterprise Linux Desktop Configuration
and Administration Guide
Melissa Goldin — Primary Writer/Maintainer of the Red Hat Enterprise Linux Step By Step Guide
The Red Hat Localization Team consists of the following people:
Amanpreet Singh Alam — Punjabi translations
Jean-Paul Aubry — French translations
David Barzilay — Brazilian Portuguese translations
Runa Bhattacharjee — Bengali translations
Chester Cheng — Traditional Chinese translations
Verena Fuehrer — German translations
Kiyoto Hashida — Japanese translations
N. Jayaradha — Tamil translations
Michelle Jiyeen Kim — Korean translations
Yelitza Louze — Spanish translations
Noriko Mizumoto — Japanese translations
Ankitkumar Rameshchandra Patel — Gujarati translations
Rajesh Ranjan — Hindi translations

178

Nadine Richter — German translations
Audrey Simons — French translations
Francesco Valente — Italian translations
Sarah Wang — Simplified Chinese translations
Ben Hung-Pin Wu — Traditional Chinese translations

	Table of Contents
	
	Introduction
	1. Audience
	2. Document Conventions
	3. More to Come
	3.1. Send in Your Feedback

	4. Activate Your Subscription
	4.1. Provide a Red Hat Login
	4.2. Provide Your Subscription Number
	4.3. Connect Your System

	5. Recommended References

	Chapter 1.
	Red Hat GFS Overview
	1.1. New and Changed Features
	1.2. Performance, Scalability, and Economy
	1.2.1. Superior Performance and Scalability
	1.2.2. Performance, Scalability, Moderate Price
	1.2.3. Economy and Performance

	1.3. GFS Functions
	1.3.1. Cluster Volume Management
	1.3.2. Lock Management
	1.3.3. Cluster Management, Fencing, and Recovery
	1.3.4. Cluster Configuration Management

	1.4. GFS Software Subsystems
	1.5. Before Configuring GFS

	Chapter 2.
	System Requirements
	2.1. Platform Requirements
	2.2. TCP/IP Network
	2.3. Fibre Channel Storage Network
	2.4. Fibre Channel Storage Devices
	2.5. Network Power Switches
	2.6. Console Access
	2.7. I/O Fencing

	Chapter 3.
	Installing GFS
	3.1. Prerequisite Tasks
	3.1.1. Prerequisite Software
	3.1.1.1. perlNetTelnet Module
	3.1.1.2. Clock Synchronization Software
	3.1.1.3. Stunnel Utility

	3.1.2. Specifying a Persistent Major Number

	3.2. Installation Tasks
	3.2.1. Installing GFS RPMs
	3.2.2. Loading the GFS Kernel Modules

	Chapter 4.
	Initial Configuration
	4.1. Prerequisite Tasks
	4.2. Initial Configuration Tasks
	4.2.1. Setting Up Logical Devices
	4.2.2. Setting Up and Starting the Cluster Configuration System
	4.2.3. Starting Clustering and Locking Systems
	4.2.4. Setting Up and Mounting File Systems

	Chapter 5.
	Using the Pool Volume Manager
	5.1. Overview of GFS Pool Volume Manager
	5.2. Synopsis of Pool Management Commands
	5.2.1. pooltool
	5.2.2. poolassemble
	5.2.3. poolinfo
	5.2.4. poolmp

	5.3. Scanning Block Devices
	5.3.1. Usage
	5.3.2. Example

	5.4. Creating a Configuration File for a New Volume
	5.4.1. Examples

	5.5. Creating a Pool Volume
	5.5.1. Usage
	5.5.2. Example
	5.5.3. Comments

	5.6. Activating/Deactivating a Pool Volume
	5.6.1. Usage
	5.6.2. Examples
	5.6.3. Comments

	5.7. Displaying Pool Configuration Information
	5.7.1. Usage
	5.7.2. Example

	5.8. Growing a Pool Volume
	5.8.1. Usage
	5.8.2. Example procedure

	5.9. Erasing a Pool Volume
	5.9.1. Usage
	5.9.2. Example
	5.9.3. Comments

	5.10. Renaming a Pool Volume
	5.10.1. Usage
	5.10.2. Example

	5.11. Changing a Pool Volume Minor Number
	5.11.1. Usage
	5.11.2. Example
	5.11.3. Comments

	5.12. Displaying Pool Volume Information
	5.12.1. Usage
	5.12.2. Examples

	5.13. Using Pool Volume Statistics
	5.13.1. Usage
	5.13.2. Examples

	5.14. Adjusting Pool Volume Multipathing
	5.14.1. Usage
	5.14.2. Examples

	Chapter 6.
	Creating the Cluster Configuration System Files
	6.1. Prerequisite Tasks
	6.2. CCS File Creation Tasks
	6.3. Dual Power and Multipath FC Fencing Considerations
	6.4. GNBD Multipath Considerations for CCS Files
	6.5. Creating the cluster.ccs File
	6.6. Creating the fence.ccs File
	6.7. Creating the nodes.ccs File

	Chapter 7.
	Using the Cluster Configuration System
	7.1. Creating a CCS Archive
	7.1.1. Usage
	7.1.2. Example
	7.1.3. Comments

	7.2. Starting CCS in the Cluster
	7.2.1. Usage
	7.2.2. Example
	7.2.3. Comments

	7.3. Using Other CCS Administrative Options
	7.3.1. Extracting Files from a CCS Archive
	7.3.1.1. Usage
	7.3.1.2. Example

	7.3.2. Listing Files in a CCS Archive
	7.3.2.1. Usage
	7.3.2.2. Example

	7.3.3. Comparing CCS Configuration Files to a CCS Archive
	7.3.3.1. Usage
	7.3.3.2. Example

	7.4. Changing CCS Configuration Files
	7.4.1. Example Procedure

	7.5. Alternative Methods to Using a CCA Device
	7.5.1. CCA File and Server
	7.5.1.1. Creating a CCA File
	7.5.1.1.1. Usage
	7.5.1.1.2. Example

	7.5.1.2. Starting the CCS Server
	7.5.1.2.1. Usage
	7.5.1.2.2. Examples

	7.5.1.3. Starting the CCS Daemon
	7.5.1.3.1. Usage
	7.5.1.3.2. Example

	7.5.2. Local CCA Files
	7.5.2.1. Starting the CCS Daemon
	7.5.2.2. Usage
	7.5.2.3. Example

	7.6. Combining CCS Methods

	Chapter 8.
	Using Clustering and Locking Systems
	8.1. Locking System Overview
	8.2. LOCKGULM
	8.2.1. Selection of LOCKGULM Servers
	8.2.2. Number of LOCKGULM Servers
	8.2.3. Starting LOCKGULM Servers
	8.2.4. Fencing and LOCKGULM
	8.2.5. Shutting Down a LOCKGULM Server
	8.2.5.1. Usage

	8.3. LOCKNOLOCK

	Chapter 9.
	Managing GFS
	9.1. Making a File System
	9.1.1. Usage
	9.1.2. Examples
	9.1.3. Complete Options

	9.2. Mounting a File System
	9.2.1. Usage
	9.2.2. Example
	9.2.3. Complete Usage

	9.3. Unmounting a File System
	9.3.1. Usage

	9.4. GFS Quota Management
	9.4.1. Setting Quotas
	9.4.1.1. Usage
	9.4.1.2. Examples

	9.4.2. Displaying Quota Limits and Usage
	9.4.2.1. Usage
	9.4.2.2. Command Output
	9.4.2.3. Comments
	9.4.2.4. Examples

	9.4.3. Synchronizing Quotas
	9.4.3.1. Usage
	9.4.3.2. Examples

	9.4.4. Disabling/Enabling Quota Enforcement
	9.4.4.1. Usage
	9.4.4.2. Comments
	9.4.4.3. Examples

	9.4.5. Disabling/Enabling Quota Accounting
	9.4.5.1. Usage
	9.4.5.2. Comments
	9.4.5.3. Examples

	9.5. Growing a File System
	9.5.1. Usage
	9.5.2. Comments
	9.5.3. Examples
	9.5.4. Complete Usage

	9.6. Adding Journals to a File System
	9.6.1. Usage
	9.6.2. Comments
	9.6.3. Examples
	9.6.4. Complete Usage

	9.7. Direct I/O
	9.7.1. ODIRECT
	9.7.2. GFS File Attribute
	9.7.2.1. Usage
	9.7.2.2. Example

	9.7.3. GFS Directory Attribute
	9.7.3.1. Usage
	9.7.3.2. Example

	9.8. Data Journaling
	9.8.1. Usage
	9.8.2. Examples

	9.9. Configuring atime Updates
	9.9.1. Mount with noatime
	9.9.1.1. Usage
	9.9.1.2. Example

	9.9.2. Tune GFS atime Quantum
	9.9.2.1. Usage
	9.9.2.2. Examples

	9.10. Suspending Activity on a File System
	9.10.1. Usage
	9.10.2. Examples

	9.11. Displaying Extended GFS Information and Statistics
	9.11.1. Usage
	9.11.2. Examples

	9.12. Repairing a File System
	9.12.1. Usage
	9.12.2. Example

	9.13. ContextDependent Path Names
	9.13.1. Usage
	9.13.2. Example

	9.14. Shutting Down a GFS Cluster
	9.15. Starting a GFS Cluster

	Chapter 10.
	Using the Fencing System
	10.1. How the Fencing System Works
	10.2. Fencing Methods
	10.2.1. APC MasterSwitch
	10.2.2. WTI Network Power Switch
	10.2.3. Brocade FC Switch
	10.2.4. Vixel FC Switch
	10.2.5. HP RILOE Card
	10.2.6. GNBD
	10.2.7. Manual
	10.2.7.1. Usage

	Chapter 11.
	Using GNBD
	11.1. GNBD Driver and Command Usage
	11.1.1. Exporting a GNBD from a Server
	11.1.1.1. Usage
	11.1.1.2. Examples

	11.1.2. Importing a GNBD on a Client
	11.1.2.1. Usage
	11.1.2.2. Example

	11.2. Considerations for Using GNBD Multipath
	11.2.1. Linux Page Caching
	11.2.2. Lock Server Startup
	11.2.3. CCS File Location
	11.2.4. Fencing GNBD Server Nodes

	11.3. Running GFS on a GNBD Server Node

	Chapter 12.
	Using GFS init.d Scripts
	12.1. GFS init.d Scripts Overview
	12.2. GFS init.d Scripts Use

	Appendix A.
	Using Red Hat GFS with Red Hat Cluster Suite
	A.1. Terminology
	A.2. Changes to Red Hat Cluster
	A.3. Installation Scenarios
	A.3.1. New Installations of Red Hat GFS and Red Hat Cluster Manager
	A.3.2. Adding Red Hat GFS to an Existing Red Hat Cluster Manager Deployment
	A.3.3. Upgrading Red Hat GFS 5.2.1 to Red Hat GFS 6.0

	Appendix B.
	Upgrading GFS
	Appendix C.
	Basic GFS Examples
	C.1. LOCKGULM, RLM Embedded
	C.1.1. Key Characteristics
	C.1.2. Kernel Modules Loaded
	C.1.3. Setup Process

	C.2. LOCKGULM, RLM External
	C.2.1. Key Characteristics
	C.2.2. Kernel Modules Loaded
	C.2.3. Setup Process

	C.3. LOCKGULM, SLM Embedded
	C.3.1. Key Characteristics
	C.3.2. Kernel Modules Loaded
	C.3.3. Setup Process

	C.4. LOCKGULM, SLM External
	C.4.1. Key Characteristics
	C.4.2. Kernel Modules Loaded
	C.4.3. Setup Process

	C.5. LOCKGULM, SLM External, and GNBD
	C.5.1. Key Characteristics
	C.5.2. Kernel Modules Loaded
	C.5.3. Setup Process

	C.6. LOCKNOLOCK
	C.6.1. Key Characteristics
	C.6.2. Kernel Modules Loaded
	C.6.3. Setup Process

	Index
	A
	B
	C
	D
	E
	F
	G
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V

	
	Colophon

